

US009304549B2

(12) United States Patent Siddiqui

(10) Patent No.:

US 9,304,549 B2

(45) **Date of Patent:**

Apr. 5, 2016

(54) HINGE MECHANISM FOR ROTATABLE COMPONENT ATTACHMENT

(71) Applicant: Microsoft Corporation, Redmond, WA

(US)

(72) Inventor: Kabir Siddiqui, Sammamish, WA (US)

(73) Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 251 days.

(21) Appl. No.: 13/852,848

(22) Filed: Mar. 28, 2013

(65) **Prior Publication Data**

US 2014/0293534 A1 Oct. 2, 2014

(51) Int. Cl.

F16M 11/00 (2006.01)

G06F 1/16 (2006.01)

E05D 7/00 (2006.01)

H05K 5/02 (2006.01)

F16M 13/00 (2006.01)

F16M 11/10 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC G06F 1/166; G06F 1/1681; H05K 5/0234 See application file for complete search history.

(56) References Cited

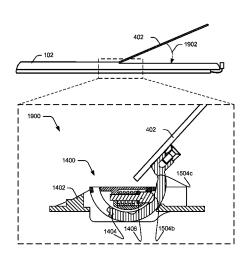
U.S. PATENT DOCUMENTS

578,325 A	3/1897	Fleming
3,600,528 A	8/1971	Leposavic
3,777,082 A	12/1973	Hatley
3,879,586 A	4/1975	DuRocher et al.
3,968,336 A	7/1976	Johnson
4,046,975 A	9/1977	Seeger, Jr.
4,065,649 A	12/1977	Carter et al.
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CA	990023	6/1976
CN	1352767	6/2002
	(Co	ntinued)
	OTHER PU	JBLICATIONS

"Advisory Action", U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages.


(Continued)

Primary Examiner — Bradley Duckworth (74) Attorney, Agent, or Firm — Judy Yee; Micky Minhas

(57) ABSTRACT

A hinge mechanism for rotatable component attachment is described. In at least some implementations, the hinge mechanism enables a support component to be adjustably attached to an apparatus, such as a computing device. For example, the hinge mechanism can be employed to rotatably attach a kickstand to a mobile computing device. The kickstand can be rotated via the hinge mechanism to various positions to provide support for different orientations of the computing device. For example, the kickstand can be positioned to support the computing device in a typing orientation such that input can be provided via an associated input device. As another example, the kickstand can be positioned to enable viewing and/or interaction with the computing device, such as in a portrait viewing orientation.

20 Claims, 24 Drawing Sheets

US 9,304,549 B2 Page 2

(56) References Cited			6,112,797 A 6,128,007 A		Colson et al. Seybold	
	U.S. PATENT DOCUMENTS		6,178,085 B1 * 6,178,443 B1		Leung 361/679.56	
4,086,45	1 A	4/1978	Boulanger	6,188,391 B1		Seely et al.
4,243,86			Strandwitz	6,254,105 B1		Rinde et al.
4,261,04			Ishiwatari et al.	6,279,060 B1 6,305,073 B1		Luke et al. Badders
4,302,643 4,317,01			Sado et al. Mazurk	6,329,617 B1	12/2001	
4,317,01			Larson	6,344,791 B1		Armstrong
4,323,74			Balash	6,366,440 B1	4/2002	
4,365,130			Christensen	6,380,497 B1 6,437,682 B1	4/2002 8/2002	Hashimoto et al.
4,492,829 4,503,29			Rodrique	6,450,046 B1	9/2002	
4,527,02			Matsumaru Morikawa et al.	6,511,378 B1		Bhatt et al.
4,559,420			Van Zeeland et al.	6,532,147 B1		Christ, Jr.
4,577,82			Wilkerson	6,543,949 B1		Ritchey et al.
4,588,18		5/1986		6,565,439 B2 6,585,435 B2	5/2003 7/2003	
4,607,14° 4,651,13°			Ono et al. Ganesan et al.	6,597,347 B1		Yasutake
4,652,70			Franklin	6,600,121 B1		Olodort et al.
4,724,60			Fiorella	6,603,408 B1	8/2003	
4,735,394		4/1988		6,603,461 B2 6,608,664 B1		Smith, Jr. et al. Hasegawa
4,801,77 4,824,26			Mizuguchi et al. Diernisse	6,617,536 B2		Kawaguchi
4,864,08			Cardinale	6,651,943 B2	11/2003	Cho et al.
4,990,90) A		Kikuchi	6,684,166 B2		Bellwood et al.
5,008,49		4/1991		6,685,369 B2 6,687,614 B2	2/2004	Lien Ihara et al.
5,021,633 5,053,583			Nopper et al. Yaniger	6,695,273 B2	2/2004	
5,107,40	1 A *		Youn 361/679.44	6,704,864 B1	3/2004	Philyaw
5,128,829		7/1992		6,721,019 B2		Kono et al.
5,220,31		6/1993		6,725,318 B1 6,774,888 B1		Sherman et al. Genduso
5,220,52 5,235,40			Kikinis Blair et al 361/679.26	6,776,546 B2		Kraus et al.
5,235,49: 5,253,36:			Nolan et al 301/0/9.20	6,780,019 B1		Ghosh et al.
5,283,559			Kalendra et al.	6,781,819 B2		Yang et al.
5,331,44	3 A		Stanisci	6,784,869 B1		Clark et al.
5,363,07			Fanucchi	6,798,887 B1 6,813,143 B2	9/2004 11/2004	
5,375,076 5,480,113		1/1994	Goodrich et al.	6,819,316 B2		Schulz et al.
5,491,31			Bartley et al.	6,856,506 B2		Doherty et al.
5,546,27	1 A	8/1996	Gut et al.	6,861,961 B2		Sandbach et al.
5,548,47	7 A		Kumar et al.	6,909,354 B2 6,914,197 B2		Baker et al. Doherty et al.
5,558,57° 5,581,68°		9/1996	Anderson et al.	6,950,950 B2		Sawyers et al.
5,596,70			Darnell et al.	6,962,454 B1		Costello
5,617,34	3 A		Danielson et al.	6,970,957 B1		Oshins et al.
5,661,279			Kenmochi	6,976,799 B2 7,007,238 B2	2/2005	Kim et al.
5,666,112 5,681,220			Crowley et al. Bertram et al.	7,051,149 B2		Wang et al.
5,737,183			Kobayashi et al.	7,083,295 B1	8/2006	Hanna
5,745,370	5 A		Barker et al.	7,091,436 B2	8/2006	
5,748,114		5/1998		7,099,149 B2 7,106,222 B2	9/2006	Krieger et al. Ward et al.
5,781,400 5,803,74		7/1998 9/1998	Maddrell et al.	7,123,292 B1		Seeger et al.
5,807,17			Davis et al.	7,152,985 B2		Benitez et al.
5,818,36	1 A	10/1998	Acevedo	D535,292 S		Shi et al.
5,828,770			Leis et al.	7,159,132 B2 7,194,662 B2		Takahashi et al. Do et al.
5,842,02° 5,861,990			Oprescu et al. Tedesco	7,213,323 B2		Baker et al.
5,874,69			Selker et al.	7,213,991 B2		Chapman et al.
5,905,48		5/1999	Podoloff	7,239,505 B2	7/2007	
5,920,31			McDonald	7,252,512 B2 7,260,221 B1		Tai et al. Atsmon
5,924,55: 5,926,170		7/1999	Sadamori et al.	7,277,087 B2		Hill et al.
5,971,63		10/1999		7,301,759 B2*		Hsiung 361/679.27
5,995,020	5 A	11/1999		7,365,967 B2	4/2008	
6,002,389		12/1999		7,415,676 B2 7,447,922 B1	8/2008	Fujita Asbury et al.
6,002,58 6,005,20			Lindsey 361/679.55 Burleson et al.	7,447,922 B1 7,447,934 B2		Asbury et al. Dasari et al.
6,012,71			Worley et al.	7,457,108 B2	11/2008	
6,014,80		1/2000	Lee	7,469,386 B2		Bear et al.
6,040,82			Seffernick et al.	7,486,165 B2		Ligtenberg et al.
6,042,07			Burch, Jr.	7,499,037 B2	3/2009	
6,044,71° 6,055,70°			Biegelsen et al. Komatsu et al.	7,502,803 B2 7,539,882 B2		Culter et al. Jessup et al.
6,061,64		5/2000		7,542,052 B2	6/2009	
6,108,20			Fullerton	7,558,594 B2		Wilson

US 9,304,549 B2 Page 3

(56) Refere	nces Cited	8,570,725 B2		Whitt, III et al.
II S DATEN	T DOCUMENTS	8,576,031 B2 8,587,701 B2		Lauder et al. Tatsuzawa
U.S. PATEN	U.S. PATENT DOCUMENTS			Healey et al.
7,559,834 B1 7/2009	York	8,599,542 B1 8,610,015 B2		Whitt et al.
	Yasutake	8,614,666 B2		Whitman et al.
	Chan et al 248/677	8,633,898 B2		Westerman et al.
	Anson	8,646,999 B2 8,674,941 B2		Shaw et al. Casparian et al.
	Louie	8,699,215 B2		Whitt, III et al.
	7 Takeda et al. 7 Clary et al.	8,719,603 B2		Belesiu
	Bolender	8,724,302 B2		Whitt et al.
	Chatterjee et al.	8,744,070 B2*		Zhang et al 379/433.13
	Krieger et al.	8,762,746 B1		Lachwani et al.
) Rha	8,767,388 B2* 8,780,540 B2		Ahn et al
	Adiseshan Chen et al.	8,780,541 B2		Whitt et al.
) Koh	8,791,382 B2		Whitt, III et al.
	McKillop et al.	8,797,765 B2*		Lin et al 361/807
) Wernersson	8,825,187 B1		Hamrick et al.
	McCoy et al.	8,830,668 B2 8,850,241 B2	9/2014	Whit, III et al. Oler et al.
	Hovden et al. Sato	8,854,799 B2		Whitt, III et al.
	Green	8,873,227 B2		Whitt et al.
	Kolmykov-Zotov et al.			Wang 361/679.3
	Onikiri et al.	8,896,993 B2		Belesiu et al.
	Ichioka et al.	8,903,517 B2		Perek et al. Chiu et al 379/428.02
	Rivalsi	8,922,996 B2		Yeh et al
	Ogiro et al. Geaghan	8,934,221 B2*		Guo
	Vergith et al.	8,935,774 B2		Belesiu et al.
8,016,255 B2 9/201	Lin	8,939,422 B2 *		Liu et al 248/397
	Conzola et al.	8,947,864 B2 8,949,477 B2		Whitt, III et al. Drasnin
	Park et al. Morin et al.	8,964,376 B2*	2/2015	Chen et al 361/679.55
	Rathi et al.	9,047,207 B2		Belesiu et al.
8,090,885 B2 1/2012	2 Callaghan et al.	9,064,654 B2		Whitt, III et al.
	2 Hotelling et al.	9,075,566 B2 9,098,117 B2		Whitt, III et al. Lutz, III et al.
	2 Osoinach et al.	9,116,550 B2		Siddiqui et al.
	2 Rodriguez et al. 2 McClure et al.	9,134,807 B2		Shaw et al.
	2 Koizumi et al.	9,134,808 B2		Siddiqui et al.
	2 Westerman	9,146,620 B2		Whitt et al. Shaw et al.
	Lii et al.	9,158,383 B2 9,158,384 B2		Whitt, III et al.
	2 Wilson et al. 2 Sherman	9,176,900 B2		Whitt, III et al.
	2 Hu et al.	9,176,901 B2	11/2015	Whitt, III et al.
D659,139 S 5/2012	2 Gengler	9,268,373 B2		Whitt et al.
	Wright et al.	2001/0023818 A1 2001/0035859 A1	11/2001	Masaru et al.
	Paek et al. Kim et al.	2002/0005108 A1		Ludwig
	Chen	2002/0044216 A1	4/2002	Cha
8,240,007 B2 8/2012	2 Duan et al.	2002/0070883 A1	6/2002	
8,243,432 B2 * 8/2012	2 Duan et al 361/679.3	2002/0126445 A1 2002/0134828 A1		Minaguchi et al. Sandbach et al.
	2 Duan et al. 2 Wang et al.	2002/0134828 AT 2002/0135457 AT		Sandbach et al.
	2 Zhang	2002/0195177 A1		Hinkley et al.
	Lauder et al.	2003/0000821 A1		Takahashi et al.
	2 Torii et al.	2003/0007648 A1 2003/0011576 A1		Currell Sandbach et al.
	2 Molne 2 Franz et al.	2003/0041376 A1 2003/0044216 A1	3/2003	
8,279,589 B2 10/2012		2003/0051983 A1	3/2003	
	2 Mignano	2003/0067450 A1		Thursfield et al.
	Andrus et al.	2003/0108720 A1	6/2003 8/2003	Kashino
	Wright	2003/0160712 A1 2003/0163611 A1	8/2003	
	Bocirnea B Memmott	2003/0197687 A1	10/2003	
	3 Lin 248/456	2003/0231243 A1		Shibutani
8,403,576 B2 3/2013	3 Merz	2004/0005184 A1		Kim et al.
	B Agata et al.	2004/0046796 A1 2004/0056843 A1	3/2004	Fujita Lin et al.
	3 Chen 16/278 3 Chueh et al.	2004/0036843 AT 2004/0113956 AT		Bellwood et al.
	Whitt, III et al.	2004/0156168 A1		LeVasseur et al.
8,514,568 B2 * 8/2013	3 Qiao et al 361/679.59	2004/0160734 A1	8/2004	
	Peng et al 361/679.01	2004/0169641 A1		Bean et al.
	Perek et al.	2004/0212598 A1		Kraus et al.
	Perek et al. Whitt, III et al.	2004/0212601 A1 2004/0258924 A1		Cake et al. Berger et al.
	3 Yamada et al.	2004/0258924 A1 2004/0268000 A1		Barker et al.

US 9,304,549 B2

Page 4

(56) References Cited 2008/0228969 A1 9/2008 Cheah et al. 2008/0238884 A1 10/2008 Harish				
U.S. PATENT DOCUMENTS		2008/0238884 A1 2008/0253822 A1	10/2008	Matias
2005/0020520 44 2	V2005 T	2008/0307242 A1 2008/0309636 A1	12/2008	Qu Feng et al.
	2/2005 Kawashima et al. 3/2005 Satake et al.	2008/0316002 A1		Brunet et al.
	3/2005 Satake et al.	2008/0316183 A1		Westerman et al.
	3/2005 Beckert et al.	2008/0320190 A1		Lydon et al.
	3/2005 Bathiche	2009/0009476 A1		Daley, III
	3/2005 Kim	2009/0073957 A1 2009/0083562 A1		Newland et al. Park et al.
	3/2005 Tsuji et al. 5/2005 Lee	2009/0089600 A1		Nousiainen
	5/2005 Misawa	2009/0096756 A1	4/2009	
	7/2005 Hill et al.	2009/0102805 A1		Meijer et al.
	0/2005 Kim et al.	2009/0131134 A1 2009/0140985 A1	6/2009	Baerlocher et al.
	2/2005 Starkweather et al. 2/2005 Nicolosi	2009/0158221 A1		Nielsen et al.
	2/2005 Saint-Hilaire et al.	2009/0174759 A1		Yeh et al.
	3/2006 Sadler et al.	2009/0177906 A1		Paniagua, Jr. et al. Fitzgerald et al.
	1/2006 Allen et al.	2009/0195497 A1 2009/0195518 A1		Mattice et al.
	5/2006 Sharma 5/2006 Inkster et al.	2009/0207144 A1		Bridger
	5/2006 Takada et al.	2009/0231275 A1	9/2009	Odgers
	5/2006 Hillis et al.	2009/0239586 A1	9/2009	
	7/2006 Glaser et al.	2009/0244009 A1 2009/0244832 A1	10/2009	Staats et al. Behar et al.
	7/2006 Pistemaa et al. 1/2006 Rubinstein et al.	2009/0244872 A1*		Yan
	3/2006 Sawyers et al.	2009/0251008 A1	10/2009	Sugaya
	8/2006 Miyasaka	2009/0259865 A1	10/2009	
	3/2006 Newman	2009/0262492 A1 2009/0265670 A1	10/2009	Whitchurch et al. Kim et al.
	8/2006 Trent, Jr. et al. 8/2006 Ziemkowski	2009/0205070 AT 2009/0285491 A1	11/2009	
2006/0192703 A1 8/	8/2006 Miyazaki	2009/0296331 A1	12/2009	Choy
	/2006 Kingsmore et al.	2009/0303204 A1		Nasiri et al.
	0/2006 Herloski	2009/0315830 A1 2009/0320244 A1	12/2009	Westerman
	/2006 Priborsky /2006 Vainio et al.	2009/0320244 A1 2009/0321490 A1		Groene et al.
	2/2006 Vanno et al.	2010/0001963 A1		Doray et al.
	/2007 Shibutani	2010/0006412 A1		Wang et al.
	3/2007 Lorenz	2010/0013319 A1 2010/0023869 A1		Kamiyama et al. Saint-Hilaire et al.
	3/2007 Homer et al. 3/2007 Pai-Paranjape et al.	2010/0023869 A1 2010/0026656 A1		Hotelling et al.
	3/2007 Pai-Paranjape et al.	2010/0038821 A1	2/2010	Jenkins et al.
	5/2007 Robertson et al.	2010/0039081 A1	2/2010	
	5/2007 Bai et al.	2010/0039764 A1 2010/0045633 A1		Locker et al. Gettemy
	5/2007 Kuo 5/2007 McGinley et al.	2010/0043033 A1 2010/0051432 A1		Lin et al.
	7/2007 Wernersson	2010/0052880 A1		Laitinen et al.
	8/2007 Newman et al.	2010/0053534 A1		Hsieh et al.
	3/2007 Louch et al.	2010/0054435 A1 2010/0056130 A1		Louch et al. Louch et al.
	3/2007 Biech 3/2007 Hotelling et al.	2010/0073329 A1		Raman et al.
	3/2007 Reindel et al.	2010/0077237 A1		Sawyers
	3/2007 Yamamoto	2010/0079379 A1		Demuynck et al.
	0/2007 Lewis	2010/0083108 A1 2010/0085321 A1		Rider et al. Pundsack
	0/2007 Bolender 0/2007 Palmer	2010/0100752 A1		Chueh et al.
	0/2007 Novotney et al.	2010/0102182 A1	4/2010	
	/2007 Yamaguchi et al.	2010/0103112 A1 2010/0105443 A1		Yoo et al. Vaisanen
)/2007 Wherry)/2007 Yukawa et al.	2010/0105445 A1 2010/0106983 A1		Kasprzak et al.
	0/2007 Oakley	2010/0115309 A1		Carvalho et al.
	/2007 Nelson et al.	2010/0117993 A1	5/2010	
	/2007 Paul et al.	2010/0123686 A1 2010/0128427 A1	5/2010	Klinghult et al.
	2/2007 Burnett et al. 2/2007 Guanghai	2010/0123427 A1 2010/0133398 A1		Chiu et al.
	2/2007 Hjort et al.	2010/0142130 A1		Wang et al.
	/2008 de los Reyes et al.	2010/0146317 A1		Challener et al.
	/2008 Jacobs et al.	2010/0148995 A1 2010/0148999 A1	6/2010	Elias Casparian et al.
	2/2008 Perez-Noguera 3/2008 Ehrensvard et al.	2010/0148999 A1 2010/0149104 A1		Sim et al.
	3/2008 Dunko	2010/0149111 A1	6/2010	
2008/0074398 A1 3/	3/2008 Wright	2010/0149377 A1	6/2010	Shintani et al.
	5/2008 Lee	2010/0154171 A1		Lombardi et al.
	5/2008 Lee	2010/0156913 A1		Ortega et al.
	5/2008 Chern 1/2008 Westerman	2010/0161522 A1 2010/0164857 A1		Tirpak et al. Liu et al.
	7/2008 Jobs et al.	2010/0164897 A1		Morin et al.
	3/2008 Yang	2010/0171891 A1	7/2010	Kaji et al.

US 9,304,549 B2

Page 5

(56) References Cited			2011/0193787 A1		Morishige et al.	
U.S. PATENT DOCUMENTS		2011/0199389 A1 2011/0205372 A1		Lu et al. Miramontes		
			2011/0221678 A1		Davydov	
2010/0174421 A1		Tsai et al.	2011/0227913 A1 2011/0231682 A1		Hyndman Kakish et al.	
2010/0180063 A1 2010/0185877 A1		Ananny et al. Chueh et al.	2011/0231002 A1 2011/0234494 A1		Peterson et al.	
2010/0183877 A1 2010/0188299 A1		Rinehart et al.	2011/0241999 A1	10/2011		
2010/0201308 A1		Lindholm	2011/0248152 A1	10/2011 10/2011	Svajda et al.	
2010/0205472 A1		Tupman et al.	2011/0248920 A1 2011/0248941 A1		Abdo et al.	
2010/0206614 A1 2010/0207774 A1	8/2010	Park et al.	2011/0261001 A1	10/2011		
2010/0220205 A1		Lee et al.			Li et al.	16/297
2010/0222110 A1		Kim et al.	2011/0266672 A1 2011/0267272 A1		Sylvester Meyer et al.	
2010/0231522 A1 2010/0231556 A1	9/2010 9/2010	Mines et al.	2011/0207272 A1 2011/0273475 A1		Herz et al.	
2010/0235546 A1		Terlizzi et al.	2011/0285555 A1		Bocirnea	
2010/0238620 A1	9/2010		2011/0290686 A1 2011/0295697 A1	12/2011	Huang Boston et al.	
2010/0250975 A1 2010/0250988 A1		Gill et al. Okuda et al.	2011/0293697 A1 2011/0297566 A1		Gallagher et al.	
2010/0250988 A1 2010/0259482 A1	10/2010		2011/0298919 A1	12/2011	Maglaque	
2010/0259876 A1*		Kim 361/679.01	2011/0302518 A1	12/2011		
2010/0265182 A1		Ball et al. Wu et al.	2011/0304577 A1 2011/0305875 A1	12/2011 12/2011	Sanford et al.	
2010/0271771 A1 2010/0274932 A1	10/2010		2011/0314425 A1	12/2011		
2010/0279768 A1		Huang et al.	2011/0316807 A1	12/2011		
2010/0289457 A1		Onnerud et al.	2011/0320204 A1 2012/0002820 A1		Locker et al. Leichter	
2010/0295812 A1 2010/0302378 A1		Burns et al. Marks et al.	2012/0002820 A1 2012/0007821 A1	1/2012		
2010/0302578 A1 2010/0306538 A1		Thomas et al.	2012/0020019 A1		Chen et al.	
2010/0308778 A1	12/2010	Yamazaki et al.	2012/0020490 A1		Leichter	
2010/0308844 A1		Day et al.	2012/0023401 A1 2012/0023459 A1		Arscott et al. Westerman	
2010/0309617 A1 2010/0313680 A1		Wang et al. Joung et al.	2012/0024682 A1		Huang et al.	
2010/0315345 A1		Laitinen	2012/0026096 A1	2/2012		
2010/0315348 A1		Jellicoe et al.	2012/0026110 A1 2012/0032887 A1		Yamano Chiu et al.	
2010/0315373 A1 2010/0321877 A1	12/2010	Steinhauser et al.	2012/0032891 A1		Parivar	
2010/0324457 A1		Bean et al.	2012/0032901 A1	2/2012		
2010/0325155 A1		Skinner et al.	2012/0032917 A1 2012/0038495 A1		Yamaguchi Ishikawa	
2011/0012873 A1 2011/0019123 A1		Prest et al. Prest et al.	2012/0038493 A1 2012/0044179 A1		Hudson	
2011/0019123 A1 2011/0031287 A1		Le Gette et al.	2012/0047368 A1		Chinn et al.	
2011/0032127 A1	2/2011	Roush	2012/0050975 A1		Garelli et al.	
2011/0036965 A1		Zhang et al.	2012/0062564 A1 2012/0068919 A1		Miyashita Lauder et al.	
2011/0037721 A1 2011/0043990 A1		Cranfill et al. Mickey et al.	2012/0069540 A1		Lauder et al.	
2011/0050576 A1		Forutanpour et al.	2012/0075249 A1	3/2012		
2011/0050626 A1		Porter et al.	2012/0077384 A1 2012/0092279 A1		Bar-Niv et al. Martin	
2011/0055407 A1 2011/0057724 A1		Lydon et al. Pabon	2012/0094257 A1		Pillischer et al.	
2011/0060926 A1		Brooks et al.	2012/0099749 A1		Rubin et al.	
2011/0069148 A1		Jones et al.	2012/0113137 A1 2012/0113579 A1	5/2012	Nomoto Agata et al.	
2011/0074688 A1 2011/0102326 A1		Hull et al. Casparian et al.	2012/0113379 A1 2012/0117409 A1	5/2012	Lee et al.	
2011/0102320 A1*		Chen et al 353/119	2012/0127118 A1	5/2012	Nolting et al.	
2011/0107958 A1		Pance et al.	2012/0127126 A1		Mattice et al. Houvener et al.	
2011/0108401 A1 2011/0113368 A1		Yamada et al. Carvajal et al.	2012/0139727 A1 2012/0140396 A1		Zeliff et al.	
2011/0115738 A1		Suzuki et al.	2012/0145525 A1	6/2012	Ishikawa	
2011/0117970 A1	5/2011	Choi	2012/0156875 A1		Srinivas et al.	
2011/0134032 A1 2011/0134043 A1		Chiu et al.	2012/0161406 A1 2012/0162693 A1	6/2012	Mersky Ito	
2011/0154045 A1 2011/0157037 A1	6/2011 6/2011	Shamir et al.	2012/0175487 A1	7/2012		
2011/0157046 A1	6/2011	Lee et al.	2012/0182242 A1		Lindahl et al.	
2011/0157087 A1		Kanehira et al.	2012/0182249 A1 2012/0182743 A1	7/2012	Endo et al.	
2011/0163955 A1 2011/0164370 A1		Nasiri et al. McClure et al.	2012/0194448 A1		Rothkopf	
2011/0167181 A1		Minoo et al.	2012/0212438 A1		Vaisanen	
2011/0167287 A1		Walsh et al.	2012/0218194 A1		Silverman	
2011/0167391 A1 2011/0169762 A1	7/2011 7/2011	Momeyer et al.	2012/0221877 A1 2012/0224073 A1	8/2012 9/2012	Prabu Miyahara	
2011/0109/02 A1 2011/0170289 A1		Allen et al.	2012/0229634 A1		Laett et al.	
2011/0176035 A1		Poulsen	2012/0242584 A1	9/2012	Tuli	
2011/0179864 A1		Raasch et al.	2012/0246377 A1		Bhesania	
2011/0184646 A1 2011/0184824 A1		Wong et al. George et al.	2012/0249443 A1 2012/0250873 A1		Anderson et al. Bakalos et al.	
2011/0184824 A1 2011/0188199 A1	8/2011	2	2012/0256829 A1	10/2012		
2011/0191480 A1		Kobayashi	2012/0256959 A1		Ye et al.	

US 9,304,549 B2

Page 6

(56)	Reference	es Cited		285922 A1		Alberth, Jr. et al.
U.S.	U.S. PATENT DOCUMENTS			00590 A1 00647 A1	11/2013	Drasnin
2012/0260177 A1	10/2012 Se	ahrar		01199 A1 01206 A1	11/2013 11/2013	
2012/0274811 A1	11/2012 B		2013/03	04941 A1	11/2013	Drasnin
2012/0299872 A1 2012/0300275 A1		Vishikawa et al. Vilardell et al.		521992 A1* 522000 A1	12/2013	LIU et al 361/679.01 Whitt
2012/0300275 A1 2012/0312955 A1	12/2012 R		2013/03	22001 A1	12/2013	Whitt
2012/0326003 A1	12/2012 Sc 1/2013 C			329360 A1 32628 A1	12/2013 12/2013	
2013/0009413 A1 2013/0015311 A1*		Cim 248/393	2013/03	35891 A1	12/2013	Chen et al.
2013/0021289 A1	1/2013 C			39757 A1 342976 A1*	12/2013	Reddy Chung 361/679.01
2013/0027867 A1 2013/0031353 A1	1/2013 La 1/2013 N	auder et al. Joro	2014/00	12401 A1	1/2014	Perek
2013/0038541 A1	2/2013 Ba)29180 A1)36430 A1		Nishimura et al. Wroblewski et al.
2013/0044074 A1 2013/0046397 A1	2/2013 Pa 2/2013 Fa		2014/00	43275 A1	2/2014	Whitman
2013/0063873 A1	3/2013 W	Vodrich et al.)48399 A1)83883 A1	2/2014 3/2014	Whitt, III
2013/0067126 A1 2013/0067259 A1		Casparian et al. reiwald et al.		85814 A1*	3/2014	Kielland 361/679.55
2013/0073877 A1	3/2013 R	ladke		19802 A1 32550 A1	5/2014	Shaw McCracken et al.
2013/0076617 A1 2013/0082824 A1	3/2013 C 4/2013 C	Saszar et al. Sollev		.67585 A1*		Kuan et al 312/326
2013/0088431 A1	4/2013 Ba	Ballagas et al.		85215 A1		Whitt et al.
2013/0100030 A1 2013/0100082 A1	4/2013 Le 4/2013 B			.85220 A1 .04514 A1		Whitt et al. Whitt et al.
2013/0106766 A1	5/2013 Y	ilmaz et al.		204515 A1		Whitt et al.
2013/0135214 A1 2013/0151944 A1	5/2013 Li			247546 A1 291134 A1	9/2014 10/2014	
2013/0151944 A1 2013/0154959 A1	6/2013 Li 6/2013 Li	indsay et al.	2014/03	62506 A1	12/2014	Whitt, III et al.
2013/0159749 A1	6/2013 M	Ioeglein et al.		72914 A1 74230 A1		Byrd et al. Shaw et al.
2013/0162554 A1 2013/0172906 A1	7/2013 C	auder et al. Dison et al.	2014/03	79942 A1	12/2014	Perek et al.
2013/0191741 A1		Dickinson et al.		05953 A1 036274 A1		Fadell et al. Belesiu et al.
2013/0212483 A1 2013/0215035 A1	8/2013 B: 8/2013 G	Brakensiek et al. Buard	2015/02	212553 A1	7/2015	Park et al.
2013/0217451 A1	8/2013 K	Comiyama et al.		27212 A1		Whitt, III et al. Belesiu et al.
2013/0222272 A1 2013/0222274 A1	8/2013 M 8/2013 M			234478 A1 261262 A1		Whitt, III et al.
2013/0222275 A1	8/2013 B	Byrd et al.	2015/03	11014 A1	10/2015	Shaw et al.
2013/0222323 A1 2013/0226794 A1	8/2013 M 8/2013 En		2015/03	78392 A1	12/2015	Siddiqui et al.
2013/0227836 A1	9/2013 W	Vhitt, III et al.		FOREIG	N PATE	NT DOCUMENTS
2013/0228023 A1 2013/0228433 A1	9/2013 D 9/2013 SI		~~ *			
2013/0228434 A1	9/2013 W	Vhitt, III et al.	CN CN		7223 3411	10/2004 8/2005
2013/0228439 A1 2013/0229100 A1*	9/2013 W	Vhitt, III liddiqui et al 312/326	CN	178	7605	6/2006
2013/0229335 A1	9/2013 W	Vhitman	CN CN	180 10119	8362 8925	7/2006 6/2008
2013/0229347 A1 2013/0229350 A1	9/2013 Lt 9/2013 SI		CN	10136	6001	2/2009
2013/0229350 A1 2013/0229351 A1	9/2013 W		CN CN	10141 10145		4/2009 6/2009
2013/0229354 A1	9/2013 W		CN	10146	4750	6/2009
2013/0229363 A1 2013/0229366 A1	9/2013 W 9/2013 D		CN CN	10150 10164		8/2009 2/2010
2013/0229380 A1	9/2013 Lt		CN	10167		3/2010
2013/0229534 A1 2013/0229568 A1	9/2013 Pa 9/2013 Ba		CN CN	10168 10190		3/2010 12/2010
2013/0229570 A1	9/2013 B		CN	10200		4/2011
2013/0229756 A1 2013/0229757 A1	9/2013 W 9/2013 W		CN CN	110201		4/2011 6/2011
2013/0229758 A1	9/2013 B	Belesiu	CN	10209 10211		6/2011
2013/0229759 A1 2013/0229760 A1	9/2013 W 9/2013 W		CN	20185		6/2011
2013/0229761 A1	9/2013 SI	haw	CN CN	10211 10212		7/2011 7/2011
2013/0229762 A1 2013/0229773 A1*	9/2013 W 9/2013 Si	Vhitt, III Jiddigui et al 361/679.59	CN	10213	8113	7/2011
2013/0230346 A1	9/2013 SI	haw	CN CN	10214 10221		8/2011 10/2011
2013/0231755 A1 2013/0232280 A1	9/2013 Pe 9/2013 Pe		CN	10229	2687	12/2011
2013/0232348 A1	9/2013 O	Oler	CN CN	10235 20244		2/2012 9/2012
2013/0232349 A1 2013/0232350 A1	9/2013 O 9/2013 B	Oler Belesiu et al.	CN	10345	5149	12/2013
2013/0232350 A1 2013/0232353 A1	9/2013 B		CN DE	20360 1011	6723 6556	5/2014 10/2002
2013/0232571 A1	9/2013 B		DE	20201000	5274	7/2010
2013/0232742 A1 2013/0262886 A1	9/2013 Bi 10/2013 N	Burnett et al. Jishimura	EP EP		5726 3188	3/1995 5/2000
2013/0268897 A1	10/2013 Li		EP		3722	7/2002

(56)	6) References Cited		"Foreign Office Action", CN Applicate 26, 2013, 4 pages.		
	FOREIGN PATENT DOCUMENTS		"i-Blason Spring Series Premium Flexib		
	TOREIGNIAIE	NI DOCCIVIENTS			
EP	1480029	11/2004	TPU Cover Case for iPhone 4 4S (White		
EP	1591891	11/2005	www.amazon.com/i-Blason-Premium-F		
EP	1983411	10/2008	Slippery/dp/B007LCLXLU> Jun. 12, 20		
EP	2006869	12/2008	"Interlink Electronics FSR (TM) Force		
EP	2026178	2/2009	Retrieved at << http://akizukidenshi.com		
EP	2353978 A1	8/2011	94-00004+Rev+B%20FSR%201ntegrat		
EP	2410408	1/2012	2013, 36 pages.		
GB	2068643	8/1981	"International Search Report and Writte		
GB	2123213	1/1984	PCT/US2014/031531, Jun. 20, 2014, 10		
GB	2305780	4/1997			
GB	2381584	5/2003	"Non-Final Office Action", U.S. Appl. N		
GB	2402460	12/2004	9 pages.		
GB	2482932	2/2012	"Non-Final Office Action", U.S. Appl		
JP	52107722	9/1977	2014, 10 pages.		
JP	56108127	8/1981	"Non-Final Office Action", U.S. Appl. N		
JP	10326124	12/1998	19 pages.		
JP	1173239	3/1999	"Non-Final Office Action", U.S. Appl		
JP	11338575	12/1999	2014, 23 pages.		
JР	2000010654	1/2000			
JР	2001142564	5/2001	"Non-Final Office Action", U.S. Appl		
JP	2002170458	6/2002	2014, 10 pages.		
JP	2004038950	2/2004	"Non-Final Office Action", U.S. Appl. N		
JP	2006163459	6/2006	15 pages.		
JР	2006294361	10/2006	"Non-Final Office Action", U.S. Appl. N		
JР	2010244514	10/2010	17 pages.		
JР	2003077368	3/2014	"Non-Final Office Action", U.S. Appl		
KR	20010107055	12/2001	2014, 9 pages.		
KR	20050014299	2/2005	"Non-Final Office Action", U.S. Appl		
KR KR	20060003093	1/2006 1/2008			
KR	20080006404 20090029411	3/2009	2014, 5 pages.		
KR	20100022059	2/2010	"Non-Final Office Action", U.S. Appl		
KR	20100022033	6/2010	2014, 8 pages.		
KR	20100007500	10/2010	"Non-Final Office Action", U.S. Appl		
KR	102011008717	8/2011	2014, 23 pages.		
KR	20110109791	10/2011	"Non-Final Office Action", U.S. Appl		
KR	20110120002	11/2011	2014, 6 pages.		
KR	20110122333	11/2011	"Non-Final Office Action", U.S. Appl		
KR	101113530	2/2012			
WO	WO-2006044818	4/2006	2014, 4 pages.		
WO	WO-2007103631	9/2007	"Non-Final Office Action", U.S. Appl		
WO	WO-2007112172	10/2007	2014, 5 pages.		
WO	WO-2009034484	3/2009	"Non-Final Office Action", U.S. Appl		
WO	WO-2010074116	7/2010	2014, 6 pages.		
WO	WO-2011049609	4/2011	"Non-Final Office Action", U.S. Appl		
WO	WO-2014209818	12/2014	2014, 6 pages.		
	OTHER DAY		"Notice of Allowance", U.S. Appl. No.		
	OTHER PU	BLICATIONS	pages.		
			"Notice of Allowance" LLS Appl No.		

- "Corrected Notice of Allowance", U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/938,930, May 6, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/938,930, Jun. 6, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/939,002, May
- 22, 2014, 2 pages. "Corrected Notice of Allowance", U.S. Appl. No. 13/939,002, Jun.
- 19, 2014, 2 pages. "Corrected Notice of Allowance", U.S. Appl. No. 13/939,002, May 5,
- 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/939,032, Jun. 26, 2014, 2 pages.
- "Final Office Action", U.S. Appl. No. 13/653,682, Jun. 11, 2014, 11 pages.
- "Final Office Action", U.S. Appl. No. 14/063,912, Apr. 29, 2014, 10 pages.
- "Final Office Action", U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages.
- "Foreign Notice of Allowance", CN Application No. 201320096755. 7, Jan. 27, 2014, 2 pages.

- on No. 201320097079.5, Sep.
- tible KickStand Anti-Slippery ite)", Retrieved From: http:// Flexible-KickStand-Anti-
- 2014, Nov. 30, 2012, 4 Pages. rce Sensing Resistors (TM)", m/download/ds/interlinkelec/ ation%Guide.pdf on Mar. 21,
- ten Opinion", Application No. 0 Pages
- No. 13/468,882, Jul. 9, 2014,
- pl. No. 13/468,949, Jun. 20,
- No. 13/470,951, Jul. 2, 2014,
- pl. No. 13/471,001, Jun. 17,
- ol. No. 13/471,030, May 15,
- No. 13/471,054, Jun. 3, 2014,
- No. 13/471,336, May 7, 2014,
- pl. No. 13/492,232, Apr. 30,
- pl. No. 13/564,520, Jun. 16,
- pl. No. 13/595,700, Jun. 18,
- pl. No. 13/651,976, Jun. 16,
- pl. No. 14/199,924, Apr. 10,
- pl. No. 14/200,595, Apr. 11,
- pl. No. 14/225,250, Jun. 17,
- pl. No. 14/225,276, Jun. 13,
- pl. No. 14/277,240, Jun. 13,
- 13/468,918, Jun. 17, 2014, 5
- "Notice of Allowance", U.S. Appl. No. 13/471,186, Jul. 3, 2014, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,405, Jun. 24, 2014, 9 pages.
- "Notice of Allowance", U.S. Appl. No. 13/651,232, Apr. 25, 2014, 9
- pages. "Notice of Allowance", U.S. Appl. No. 13/651,287, May 2, 2014, 6 pages.
- "Notice of Allowance", U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages.
- "Notice of Allowance", U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages.
- "Restriction Requirement", U.S. Appl. No. 13/595,700, May 28, 2014, 6 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages.
- "The New Lenovo Yoga Tablet 8", Retrieved From: Jun. 11, 2014, 2014, 2 Pages.
- Arar, "HP Envy Rove: A Movable (If Underpowered) All-In-One PC", Retrieved From: http://www.pcworld.com/article/2047032/ hp-envy-rove-a-movable-if-underpowered-all-in-one-pc.html> Jun. 11, 2014, Aug. 21, 2013, 6 Pages.

OTHER PUBLICATIONS

Lee, et al., "LED Light Coupler Design for a Ultra Thin Light Guide", Journal of the Optical Society of Korea, vol. 11, Issue.3, Retrieved from http://opticslab.kongju.ac.kr/pdf/06.pdf>, Sep. 2007, 5 pages. Purcher, "Apple Designs a Future Built-In Stand for the iPad & More", Retrieved From: http://www.patentlyapple.com/patently-apple/2011/02/apple-designs-a-future-built-in-stand-for-the-ipad-more.html> Jun. 11, 2014, Feb. 13, 2011, 9 pages.

Thurrott, "Surface Pro 3: Continuous Kickstand", Retrieved From: http://winsupersite.com/mobile-devices/surface-pro-3-continuous-kickstand Jun. 11, 2014, May 21, 2014, 5 Pages.

"Accessing Device Sensors", retrieved from https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html on May 25, 2012, 4 pages.

"ACPI Docking for Windows Operating Systems", Retrieved from: http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php on Jul. 6, 2012,10 pages.

"Cholesteric Liquid Crystal", Retrieved from: http://en.wikipedia.org/wiki/Cholesteric_liquid_crystal on Aug. 6, 2012,(Jun. 10, 2012), 2 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 13/470,633, (Apr. 9, 2013), 2 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 13/470,633, (Jul. 2, 2013), 2 pages.

"DR2PA", retrieved from http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H_LOGO.pdf on Sep. 17, 2012, 4 pages.

"Final Office Action", U.S. Appl. No. 13/651,195, (Apr. 18, 2013),13 pages.

"Final Office Action", U.S. Appl. No. 13/651,232, (May 21, 2013), 21 pages.

"Final Office Action", U.S. Appl. No. 13/651,287, (May 3, 2013),16

"First One Handed Fabric Keyboard with Bluetooth Wireless Technology", Retrieved from: http://press.xtvworld.com/article3817. html> on May 8, 2012,(Jan. 6, 2005), 2 pages.

"Force and Position Sensing Resistors: An Emerging Technology", Interlink Electronics, Available at http://staff.science.uva.nl/~vlaander/docu/FSR/An_Exploring_Technology.pdf,(Feb. 1990), pp. 1-6

"Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology", Retrieved from: http://www.geekzone.co.nz/content.asp?contentid=3898 on May 7, 2012, (Jan. 7, 2005), 3 pages.

"i-Interactor electronic pen", Retrieved from: http://www.alibaba.com/product-gs/331004878/i_Interactor_electronic_pen.html on Jun. 19, 2012, 5 pages.

"Incipio LG G-Slate Premium Kickstand Case—Black Nylon", Retrieved from: http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916 on May 8, 2012, 4 pages. "Membrane Keypads", Retrieved from: http://www.pannam.com/ on May 9, 2012, (Mar. 4, 2009), 2 pages. "Motion Sensors", *Android Developers*, retrieved from http://developer.android.com/guide/topics/sensors/sensors_motion.html on May 25, 2012, 7 pages.

"MPC Fly Music Production Controller", AKAI Professional, Retrieved from: http://www.akaiprompc.com/mpc-fly on Jul. 9, 2012, 4 pages.

"NI Releases New Maschine & Maschine Mikro", Retrieved from http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/ on Sep. 17, 2012, 19 pages.

"Non-Final Office Action", U.S. Appl. No. 13/471,001, (Feb. 19, 2013),15 pages.

"Non-Final Office Action", U.S. Appl. No. 13/471,139, (Mar. 21, 2013),12 pages.

"Non-Final Office Action", U.S. Appl. No. 13/471,202, (Feb. 11, 2013).10 pages.

"Non-Final Office Action", U.S. Appl. No. 13/471,336, (Jan. 18, 2013),14 pages.

"Non-Final Office Action", U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages.

"Non-Final Office Action", U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages.

"Non-Final Office Action", U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,195, (Jan. 2, 2013),14 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,232, (Jan. 17, 2013),15 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,272, (Feb. 12, 2013),10 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,287, (Jan. 29, 2013),13 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,726, (Apr. 15, 2013), 6 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,871, (Mar. 18, 2013),14 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,871, (Jul. 1, 2013), 5 pages.

"Non-Final Office Action", U.S. Appl. No. 13/651,976, (Feb. 22, 2013),16 pages.

"Non-Final Office Action", U.S. Appl. No. 13/653,321, (Feb. 1, 2013),13 pages.

"Non-Final Office Action", U.S. Appl. No. 13/653,682, (Feb. 7, 2013),11 pages.

"Non-Final Office Action", U.S. Appl. No. 13/653,682, (Jun. 3, 2013),14 pages.

"Non-Final Office Action", U.S. Appl. No. 13/656,055, (Apr. 23, 2013),11 pages.

"Notice of Allowance", U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages.

"Notice of Allowance", U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages.

"Notice of Allowance", U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages.

"Notice of Allowance", U.S. Appl. No. 13/651,272, (May 2, 2013), 7 pages.

"Notice of Allowance", U.S. Appl. No. 13/651,304, (Jul. 1, 2013), 5 pages.

"Notice of Allowance", U.S. Appl. No. 13/651,327, (Jun. 11, 2013), 7 pages.

"Notice of Allowance", U.S. Appl. No. 13/651,726, (May 31, 2013), 5 pages.

"Position Sensors", *Android Developers*, retrieved from http://developer.android.com/guide/topics/sensors/sensors_position.html on May 25, 2012, 5 pages.

"Reflex LCD Writing Tablets", retrieved from http://www.kentdisplays.com/products/lcdwritingtablets.html on Jun. 27, 2012, 3 pages.

"Restriction Requirement", U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages.

"Restriction Requirement", U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages.

"Restriction Requirement", U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages.

"Restriction Requirement", U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages.

"SMART Board™ Interactive Display Frame Pencil Pack", Available at http://downloads01.smarttech.com/media/sitecore/en/sup-port/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.

pdf>,(2009), 2 pages.

"SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System", Retrieved from: < http://www.solarcsystems.com/us_multidirectional_uv_light_therapy_1_intro.html > on Jul. 25, 2012,(2011), 4 pages.

"Tilt Shift Lenses: Perspective Control", retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages.

OTHER PUBLICATIONS

"Virtualization Getting Started Guide", Red Hat Enterprise Linux 6, Edition 0.2, retrieved from http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Getting_Started_Guide/index.html on Jun. 13, 2012, 24 pages.

"What is Active Alignment?", http://www.kasalis.com/active_alignment.html, retrieved on Nov. 22, 2012, 2 Pages.

Block, Steve et al., "DeviceOrientation Event Specification", *W3C*, *Editor's Draft*, retrieved from https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html May 25, 2012,(Jul. 12, 2011),14 pages.

Brown, Rich "Microsoft Shows Off Pressure-Sensitive Keyboard", retrieved from http://news.cnet.com/8301-17938_105-10304792-1.html on May 7, 2012, (Aug. 6, 2009), 2 pages.

Butler, Alex et al., "SideSight: Multi-"touch" Interaction around Small Devices", *In the proceedings of the 21st annual ACM symposium on User interface software and technology.*, retrieved from http://research.microsoft.com/pubs/132534/sidesight_crv3.pdf on May 29, 2012, (Oct. 19, 2008), 4 pages.

Crider, Michael "Sony Slate Concept Tablet "Grows" a Kickstand", Retrieved from: http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/ on May 4, 2012,(Jan. 16, 2012), 9 pages.

Das, Apurba et al., "Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction", Retrieved from http://www.autexrj.com/cms/zalaczone_pliki/5_013_11.pdf, (Jun. 2011),7 pages.

Dietz, Paul H., et al., "A Practical Pressure Sensitive Computer Keyboard", In Proceedings of UIST 2009, (Oct. 2009), 4 pages.

Glatt, Jeff "Channel and Key Pressure (Aftertouch)." Retrieved from: http://home.roadrunner.com/~jgglatt/tutr/touch.htm on Jun. 11, 2012. 2 pages.

Hanlon, Mike "ElekTex Smart Fabric Keyboard Goes Wireless", Retrieved from: http://www.gizmag.com/go/5048/ on May 7, 2012,(Jan. 15, 2006), 5 pages.

Kaur, Sukhmani "Vincent Liew's redesigned laptop satisfies ergonomic needs", Retrieved from: http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/ on Jul. 27, 2012, Jun. 21, 2010), 4 pages.

Khuntontong, Puttachat et al., "Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films", IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156.

Linderholm, Owen "Logitech Shows Cloth Keyboard for PDAs", Retrieved from: http://www.pcworld.com/article/89084/logitech_shows_cloth_keyboard_for_pdas.html on May 7, 2012, (Mar. 15, 2002), 5 pages.

McLellan, Charles "Eleksen Wireless Fabric Keyboard: a first look", Retrieved from: http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm on May 7, 2012,(Jul. 17, 2006), 9 pages.

Post, E.R. et al., "E-Broidery: Design and Fabrication of Textile-Based Computing", IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860.

Purcher, Jack "Apple is Paving the Way for a New 3D GUI for IOS Devices", Retrieved from: http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html on Jun. 4, 2012, (Jan. 12, 2012), 15 pages.

Qin, Yongqiang et al., "pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces", *In Proceedings of ITS 2010*, Available at http://www.dfki.de/its2010/papers/pdf/po172.pdf, (Nov. 2010), pp. 283-284.

Sumimoto, Mark "Touch & Write: Surface Computing With Touch and Pen Input", Retrieved from: http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/ on Jun. 19, 2012, (Aug. 7, 2009), 4 pages.

Takamatsu, Seiichi et al., "Flexible Fabric Keyboard with Conductive Polymer-CoatedFibers", In Proceedings of Sensors 2011, (Oct. 28, 2011), 4 pages.

Valliath, GT., "Design of Hologram for Brightness Enhancement in Color LCDs", Retrieved from http://www.loreti.it/Download/PDF/LCD/44_05.pdf on Sep. 17, 2012, 5 pages.

Williams, Jim "A Fourth Generation of LCD Backlight Technology", Retrieved from http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995),124 pages.

Zhang, et al., "Model-Based Development of Dynamically Adaptive Software", *In Proceedings of ICSE 2006*, Available at http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380.

"Corrected Notice of Allowance", U.S. Appl. No. 13/651,232, Jul. 31, 2014, 2 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 13/939,032, Jul. 15, 2014, 2 pages.

"Final Office Action", U.S. Appl. No. 13/471,376, Aug. 18, 2014, 24 pages.

"Final Office Action", U.S. Appl. No. 13/595,700, Aug. 15, 2014, 6 pages.

"Final Office Action", U.S. Appl. No. 13/599,635, Aug. 8, 2014, 16 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028483, Jun. 24, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028484, Jun. 24, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028485, Jun. 25, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028769, Jun. 26, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028771, Jun. 19, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028486, Jun. 20, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/041017, Jul. 17, 2014, 10 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028489, Jun. 20, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028767, Jun. 24, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028490, Jun. 24, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028766, Jun. 26, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028772, Jun. 30, 2014, 11 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028768, Jun. 24, 2014, 12 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028482, Jun. 20, 2014, 13 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028487, May 27, 2014, 9 pages.

"International Search Report and Written Opinion", Application No. PCT/US2013/028770, Jun. 26, 2014, 9 pages.

"Non-Final Office Action", U.S. Appl. No. 13/471,412, Jul. 11, 2014, 22 pages.

"The Microsoft Surface Tablets Comes With Impressive Design and Specs", Retrieved at <<ht>http://microsoftabletreview.com/themicrosoft-surface-tablets-comes-with-impressive-design-and-specs>>, Retrieved Date: Jan. 29, 2013, pp. 2.

"Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®", Retrieved at <http://cirago.com/wordpress/wpcontent/uploads/2012/10/ipc1500brochure1.pdf>, Retrieved Date: Jan. 29, 2013, p. 1.

"Corrected Notice of Allowance", U.S. Appl. No. 13/651,327, (Sep. 12, 2013), 2 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 13/651,726, (Sep. 17, 2013), 2 pages.

"Final Office Action", U.S. Appl. No. 13/471,001, (Jul. 25, 2013), 20 pages.

OTHER PUBLICATIONS

- "Final Office Action", U.S. Appl. No. 13/471,139, (Sep. 16, 2013),13 pages.
- "Final Office Action", U.S. Appl. No. 13/471,336, (Aug. 28, 2013),18 pages.
- "Final Office Action", U.S. Appl. No. 13/651,976, (Jul. 25, 2013), 21 pages.
- "Final Office Action", U.S. Appl. No. 13/653,321, (Aug. 2, 2013),17 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/527,263, (Jul. 19, 2013), 5 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/938,930, (Aug. 29, 2013), 9 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/939,002, (Aug. 28, 2013), 6 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/939,032, (Aug. 29, 2013), 7 pages.
- "PCT Search Report and Written Opinion", Application No. PCT/US2013/029461, (Jun. 21, 2013),11 pages.
- "PCT Search Report and Written Opinion", Application No. PCT/US2013/028948, (Jun. 21, 2013),11 pages.
- "Advanced Configuration and Power Management Specification", *Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1*, (Dec. 22, 1996), 364 pages.
- "Basic Cam Motion Curves", Retrieved From: http://ocw.metu.edu.tr/pluginfile.php/6886/mod_resource/content/1/ch8/8-3.htm Nov. 22, 2013, Middle East Technical University, (1999), 14 Pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/651,327, (Sep. 23, 2013), 2 pages.
- "Final Office Action", U.S. Appl. No. 13/653,682, (Oct. 18, 2013),16 pages.
- "Final Office Action", U.S. Appl. No. 13/656,055, (Oct. 23, 2013),14 pages.
- "Final Office Action", U.S. Appl. No. 13/938,930, (Nov. 8, 2013),10
- "Final Office Action", U.S. Appl. No. 13/939,002, (Nov. 8, 2013), 7 pages.
- "International Search Report and Written Opinion", Application No. PCT/US2013/040968, (Sep. 5, 2013),12 pages.
- "International Search Report and Written Opinion", Application No. PCT/US2013/042550, (Sep. 24, 2013),14 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/780,228, (Oct. 30, 2013),12 pages.
- "Notice of Allowance", U.S. Appl. No. 13/563,435, (Nov. 12, 2013), 5 pages
- "Notice of Allowance", U.S. Appl. No. 13/651,871, (Oct. 2, 2013), 7 pages.
- "Notice to Grant", CN Application No. 201320097089.9, (Sep. 29, 2013), 2 Pages.
- "Notice to Grant", CN Application No. 201320097124.7, (Oct. 8, 2013), 2 pages.
- "Restriction Requirement", U.S. Appl. No. 13/468,918, (Nov. 29, 2013) 6 pages
- "Teach Me Simply", Retrieved From: http://techmesimply.blogspot.in/2013/05/yugatech_3.html on Nov. 22, 2013, (May 3, 2013), pp. 1-6.
- "Welcome to Windows 7", Retrieved from: http://www.microsoft.com/en-us/downloaded/confirmation.aspx?id=4984 on Aug. 1, 2013, (Sep. 16, 2009), 3 pages.
- Chavan, Umesh et al., "Synthesis, Design and Analysis of a Novel Variable Lift Cam Follower System", *In Proceedings: International Journal of Desingn Engineering*, vol. 3, Issue 4, Inderscience Publishers, (Jun. 3, 2010), 1 Page.
- Justin, "Seidio Active with Kickstand for the Galaxy SIII", Retrieved From: http://www.t3chniq.com/seidio-active-with-kickstand-gs3/ on Nov. 22, 2013, (Jan. 3, 2013), 5 Pages.
- Lahr, Derek "Development of a Novel Cam-based Infinitely Variable Transmission", *Proceedings: In Thesis of Master of Science in Mechanical Engineering*, Virginia Polytechnic Institute and State University, (Nov. 6, 2009), 91 pages.

- Lambert, Steve B., "Cam Design", *In Proceedings: Kinematics and dynamics of Machine*, University of Waterloo Department of Mechanical Engineering, (Jul. 2, 2002), pp. 51-60.
- Prospero, Michael "Samsung Outs Series 5 Hybrid PC Tablet", Retrieved from: http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8 on Oct. 31, 2013, (Jun. 4, 2012), 7 pages.
- Sanap, Suresh et al., "Design and Analysis of Globoidal Cam Index Drive", *Proceedings: In International Journal of Scientific Research Engineering & Technology*, (Jun. 2013), 6 Pages.
- Siddiqui, Kabir "Hinge Mechanism for Rotatable Component Attachment", U.S. Appl. No. 13/852,848, (Mar. 28, 2013), 51 pages. "Corrected Notice of Allowance", U.S. Appl. No. 13/471,030, Sep. 30, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 pages.
- "Final Office Action", U.S. Appl. No. 13/468,949, Oct. 6, 2014, 11 pages.
- "Final Office Action", U.S. Appl. No. 13/471,054, Oct. 23, 2014, 17 pages.
- "Final Office Action", U.S. Appl. No. 13/471,336, Oct. 6, 2014, 13 pages.
- "Final Office Action", U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages.
- "Final Office Action", U.S. Appl. No. 13/595,700, Oct. 9, 2014, 8 pages.
- "Final Office Action", U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages.
- "International Search Report and Written Opinion", Application No. PCT/US2014/043546, Oct. 9, 2014, 10 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,393, Oct. 20, 2014, 12 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/525,614, Nov. 24, 2014, 19 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/780,228, Sep. 15, 2014, 18 pages.
- "Notice of Allowance", U.S. Appl. No. 13/653,682, Sep. 24, 2014, 4 pages.
- "Restriction Requirement", U.S. Appl. No. 14/147,252, Dec. 1, 2014, 6 pages.
- Harrison, "UIST 2009 Student Innovation Contest-Demo Video", Retrieved From: https://www.youtube.com/watch?v= PDI8eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/651,287, Aug. 21, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages.
- "Final Office Action", U.S. Appl. No. 13/656,055, Sep. 17, 2014, 10 pages.
- "Foreign Notice of Allowance", CN Application No. 201320097065. 3, Nov. 21, 2013, 2 pages.
- "Foreign Office Action", CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,282, Sep. 3, 2014, 13 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/063,912, Sep. 2, 2014, 11 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,030, Sep. 5, 2014, 6 pages.
- "Notice of Allowance", U.S. Appl. No. 14/277,240, Sep. 16, 2014, 4 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/471,405, Aug. 29, 2014, 5 pages.
- "Advisory Action", U.S. Appl. No. 13/939,032, Feb. 24, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages.
- "Final Office Action", U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13

OTHER PUBLICATIONS

- "Foreign Office Action", CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages.
- "Foreign Office Action", CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages.
- "Non-Final Office Action", U.S. Appl. No. 13/599,635, Feb. 25, 2014, 13 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,186, Feb. 27, 2014, 8 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,376, Apr. 2, 2014, 17 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,405, Feb. 20, 2014, 37 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/653,682, Feb. 26, 2014, 10 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/656,055, Mar. 12, 2014, 17 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,139, Mar. 17, 2014, 4 pages.
- "Notice of Allowance", U.S. Appl. No. 13/938,930, Feb. 20, 2014, 4 pages.
- "Notice of Allowance", U.S. Appl. No. 13/939,002, Mar. 3, 2014, 4
- "Notice of Allowance", U.S. Appl. No. 13/939,032, Apr. 3, 2014, 4 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/653,321, Mar. 28, 2014. 4 pages.
- "Final Office Action", U.S. Appl. No. 13/468,882, Feb. 12, 2015, 9 pages.
- "First Examination Report", NZ Application No. 628690, Nov. 27, 2014, 2 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/599,635, Feb. 12, 2015, 16 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/147,252, Feb. 23, 2015, 11 pages.
- "Notice of Allowance", U.S. Appl. No. 14/200,595, Feb. 17, 2015, 2 pages.
- "Notice of Allowance", U.S. Appl. No. 14/200,595, Feb. 25, 2015, 4
- pages. "Non-Final Office Action", U.S. Appl. No. 14/063,912, Jan. 2, 2014, 10 pages.
- "FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP", FingerWorks, Inc. Retrieved from http://
- ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, 2002, 14 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/651,232, Dec. 5, 2013, 15 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/468,918, Dec. 26, 2013, 18 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages.
- "Notice of Allowance", U.S. Appl. No. 13/653,321, Dec. 18, 2013, 4 pages.
- "Foreign Office Action", CN Application No. 201320097066.8, Oct. 24, 2013, 5 Pages.
- "Non-Final Office Action", U.S. Appl. No. 13/939,002, Dec. 20, 2013, 5 pages.
- "Final Office Action", U.S. Appl. No. 13/939,032, Dec. 20, 2013, 5 pages.

- "Notice of Allowance", U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages.
- "Final Office Action", U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/277,240, Jan. 8, 2015, 2 pages.
- "Final Office Action", U.S. Appl. No. 13/470,951, Jan. 12, 2015, 20 pages.
- "Final Office Action", U.S. Appl. No. 13/471,412, Dec. 15, 2014, 11 pages.
- "Final Office Action", U.S. Appl. No. 13/527,263, Jan. 27, 2015, 7 pages.
- "Final Office Action", U.S. Appl. No. 14/063,912, Jan. 12, 2015, 12 pages.
- "Final Office Action", U.S. Appl. No. 14/225,276, Dec. 17, 2014, 6 pages.
- "Foreign Office Action", CN Application No. 201320097079.5, Jul. 28, 2014, 4 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,030, Jan. 15, 2015, 7 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/564,520, Jan. 26, 2015, 6 pages.
- "Notice of Allowance", U.S. Appl. No. 13/595,700, Jan. 21, 2015, 4 pages.
- "Notice of Allowance", U.S. Appl. No. 13/651,976, Jan. 21, 2015, 10 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/471,405, Dec. 17, 2014, 5 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/651,232, Apr. 24, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/651,232, Jun. 10, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/656,055, Apr. 13, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/200,595, Jun. 4, 2015. 3 pages.
- "Final Office Action", U.S. Appl. No. 13/525,614, Apr. 29, 2015, 20 pages.
- "Final Office Action", U.S. Appl. No. 13/780,228, Apr. 10, 2015, 19 pages.
- "Final Office Action", U.S. Appl. No. 14/225,250, Mar. 13, 2015, 7
- "Foreign Notice on Reexamination", CN Application No. 201320097066.8, Apr. 3, 2015, 7 Pages.
- "Foreign Office Action", CN Application No. 201310067808.7, May 28, 2015, 14 Pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,054, Mar. 13, 2015, 18 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,336, Jun. 24, 2015, 15 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,376, Mar. 27, 2015, 28 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,393, Mar. 26, 2015, 13 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,412, Jun. 1, 2015, 31 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/063,912, May 7, 2015, 12 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/225,276, Apr. 23, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 13/468,949, Apr. 24, 2015, 9 pages.
- "Notice of Allowance", U.S. Appl. No. 13/468,918, Apr. 8, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 13/468,949, Apr. 24, 2015, 8 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,030, Apr. 6, 2015, 6 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,282, Apr. 30, 2015, 8 pages.

OTHER PUBLICATIONS

- "Notice of Allowance", U.S. Appl. No. 13/564,520, May 8, 2015, 4 pages.
- "Notice of Allowance", U.S. Appl. No. 13/651,232, Mar. 30, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 13/656,055, Mar. 4, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 14/225,276, Jun. 22, 2015, 4 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/468,918, Jun. 4, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/468,949, Jun. 5, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/595,700, Apr. 10, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/595,700, May 4, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/595,700, May 22, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/656,055, May 15, 2015, 2 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/656,055, Jun. 10, 2015, 2 pages.
- Schafer, "Using Interactive Maps for Navigation and Collaboration", CHI '01 Extended Abstracts on Human Factors in Computing Systems, Mar. 31, 2001, 2 pages.
- "Advisory Action", U.S. Appl. No. 13/471,376, Sep. 23, 2015, 7 pages.
- "Advisory Action", U.S. Appl. No. 14/059,280, Sep. 25, 2015, 7 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/564,520, Sep. 17, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/225,276, Aug. 27, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/225,276, Sep. 29, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/457,881, Aug. 20, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/457,881, Oct. 2, 2015, 2 pages.
- "Decision on Reexamination", CN Application No. 201320097079.
- 5, Sep. 7, 2015, 8 Pages. "Extended European Search Report", EP Application No. 13858620.
- 1, Sep. 18, 2015, 6 pages. "Extended European Search Report", EP Application No. 13858834.
- 8, Oct. 29, 2015, 8 pages.
- "Extended European Search Report", EP Application No. 13859280. 3, Sep. 7, 2015, 6 pages.
 "Extended European Search Penort", EP Application No. 13850406
- "Extended European Search Report", EP Application No. 13859406. 4, Sep. 8, 2015, 6 pages.
- "Final Office Action", U.S. Appl. No. 13/689,541, Nov. 2, 2015, 21 pages.
- "Final Office Action", U.S. Appl. No. 14/063,912, Sep. 3, 2015, 13 pages.
- "Foreign Office Action", CN Application No. 201310067385.9, Aug. 6, 2015, 16 pages.
- "Foreign Office Action", CN Application No. 201310067592.4, Oct. 23, 2015, 12 Pages.
- "Foreign Office Action", CN Application No. 201310067627.4, Sep. 28, 2015, 14 pages.
- "Foreign Office Action", CN Application No. 201310096345.7, Oct. 19, 2015, 16 Pages.
- "Foreign Office Action", CN Application No. 201310316114.2, Sep. 29, 2015, 13 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/470,951, Oct. 1, 2015, 29 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/471,393, Sep. 30, 2015, 15 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/780,228, Sep. 18, 2015, 19 pages.

- "Non-Final Office Action", U.S. Appl. No. 14/162,529, Sep. 18, 2015, 13 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/225,250, Aug. 19, 2015, 9 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/225,276, Aug. 19, 2015, 9 pages.
- "Notice of Allowance", U.S. Appl. No. 13/471,054, Sep. 25, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 14/727,001, Oct. 2, 2015, 4 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/468,949, Sep. 14, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/471,030, Aug. 10, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/564,520, Aug. 14, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/651,232, Jul. 6, 2015, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/656,055, Jul. 1, 2015, 2 pages.
- "Final Office Action", U.S. Appl. No. 13/471,376, Jul. 28, 2015, 35 pages.
- "Final Office Action", U.S. Appl. No. 13/492,232, Jul. 10, 2015, 11 pages.
- "Final Office Action", U.S. Appl. No. 13/599,635, Jul. 30, 2015, 23 pages.
- "Final Office Action", U.S. Appl. No. 14/059,280, Jul. 22, 2015, 25 pages.
- "Final Office Action", U.S. Appl. No. 14/147,252, Jun. 25, 2015, 11 pages.
- "Foreign Office Action", CN Application No. 201310067335.0, Jun. 12, 2015. 15 Pages.
- "Foreign Office Action", CN Application No. 201310225788.1, Jun. 23, 2015, 14 Pages.
- "International Preliminary Report on Patentability", Application No. PCT/US2014/031531, Jun. 9, 2015, 7 pages.
- "Non-Final Office Action", U.S. Appl. No. 13/525,614, Jul. 31, 2015, 20 pages.
- "Non-Final Office Action", U.S. Appl. No. 14/727,001, Jul. 10, 2015, 7 pages.
- "Notice of Allowance", U.S. Appl. No. 14/457,881, Jul. 22, 2015, 7 pages.
- "Supplemental Notice of Allowance", U.S. Appl. No. 13/468,918, Aug. 7, 2015, 4 pages.
- Cunningham, "Software Infrastructure for Natural Language Processing", In Proceedings of the fifth conference on Applied natural language processing, Mar. 31, 1997, pp. 237-244.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/471,054, Jan. 11, 2016, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/527,263, Jan. 4, 2016, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 13/527,263, Jan. 11, 2016, 2 pages.
- "Corrected Notice of Allowance", U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.
- "Extended European Search Report", EP Application No. 13858283. 8, Nov. 23, 2015, 10 pages.
- "Extended European Search Report", EP Application No. 13858397. 6, Nov. 30, 2015, 7 pages.
- "Extended European Search Report", EP Application No. 13858674. 8, Nov. 27, 2015, 6 pages.
- "Extended European Search Report", EP Application No. 13860272. 7, Dec. 14, 2015, 9 pages.
- "Extended European Search Report", EP Application No. 13861292. 4, Nov. 23, 2015, 7 pages.
- "Final Office Action", U.S. Appl. No. 13/471,336, Dec. 10, 2015, 17 pages.
- "Foreign Office Action", CN Application No. 201310065273.X, Oct. 28, 2015, 14 pages.
- "Foreign Office Action", CN Application No. 201310067373.6, Dec. 23, 2015, 15 Pages.
- "Foreign Office Action", CN Application No. 201310067429.8, Nov. 25, 2015, 12 Pages.

OTHER PUBLICATIONS

"Foreign Office Action", CN Application No. 201310067622.1, Oct. 27, 2015, 14 pages.

"Foreign Office Action", CN Application No. 201310067631.0, Dec. 10, 2015, 11 Pages.

"Foreign Office Action", CN Application No. 201310067641.4, Dec. 30, 2015, 12 Pages.

"Foreign Office Action", CN Application No. 201310067808.7, Jan. 7, 2016, 6 Pages.

"International Search Report and Written Opinion", Application No. PCT/US2015/052757, Dec. 4, 2015, 12 pages.

"Non-Final Office Action", U.S. Appl. No. 13/468,882, Nov. 13,

2015, 9 pages.
"Non-Final Office Action", U.S. Appl. No. 13/492,232, Dec. 17, 2015, 11 pages.

"Notice of Allowance", U.S. Appl. No. 13/471,376, Nov. 23, 2015, 9 pages.

"Notice of Allowance", U.S. Appl. No. 13/471,412, Nov. 20, 2015, 10 pages.

"Notice of Allowance", U.S. Appl. No. 13/527,263, Dec. 9, 2015, 6

"Notice of Allowance", U.S. Appl. No. 14/059,280, Nov. 23, 2015, 9 pages.

"Notice of Allowance", U.S. Appl. No. 14/166,596, Dec. 4, 2015, 15 pages.

"Notice of Allowance", U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.

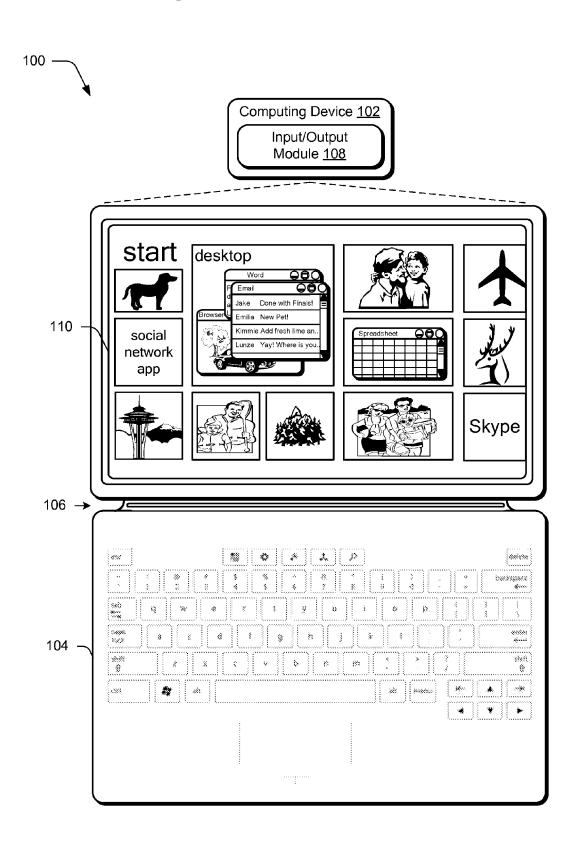
"Restriction Requirement", U.S. Appl. No. 14/794,182, Dec. 22, 2015, 6 pages.

"Supplemental Notice of Allowance", U.S. Appl. No. 13/471,054, Nov. 19, 2015, 2 pages.

"Supplementary European Search Report", EP Application No. 13728568.0, Oct. 30, 2015, 7 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 13/471,412, Feb. 16, 2016, 2 pages.

"Corrected Notice of Allowance", U.S. Appl. No. 14/727,001, Jan. 25, 2016, 2 pages.


"Extended European Search Report", EP Application No. 13857958. 6, Dec. 18, 2015, 8 pages.

"Extended European Search Report", EP Application No. 13860836. 9, Nov. 27, 2015, 9 pages.

"Final Office Action", U.S. Appl. No. 14/225,250, Jan. 29, 2016, 10 pages.

"Restriction Requirement", U.S. Appl. No. 14/502,867, Feb. 16, 2016, 7 pages.

* cited by examiner

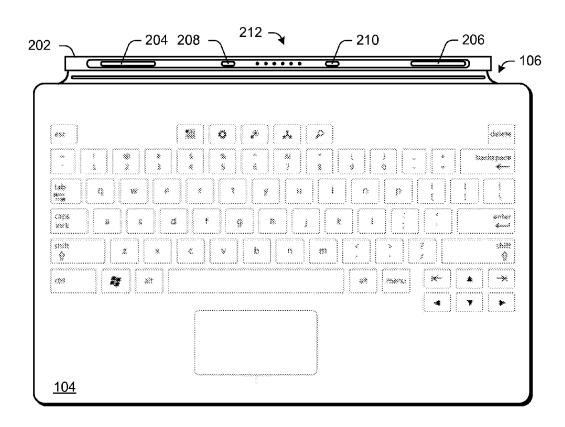
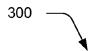



Fig. 2

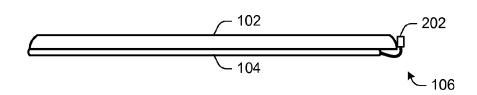


Fig. 3

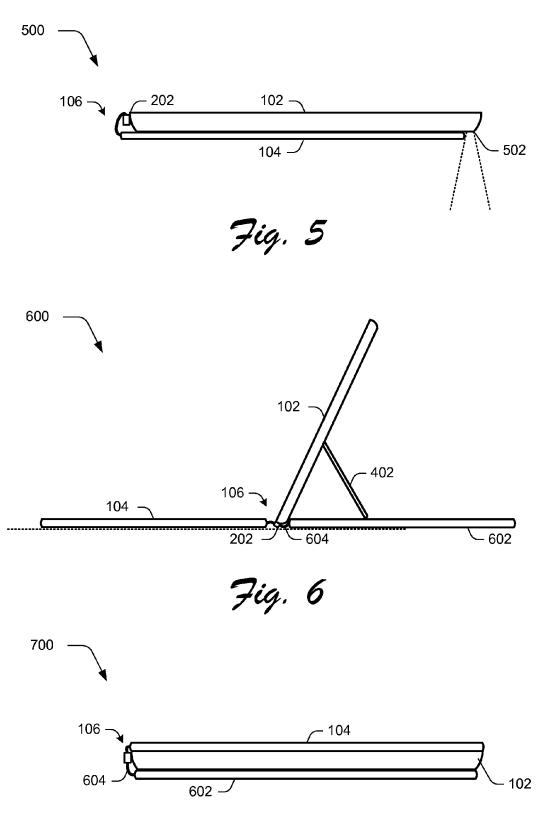



Fig. 4



Fig. 8

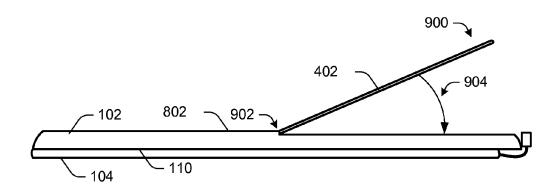


Fig. 9

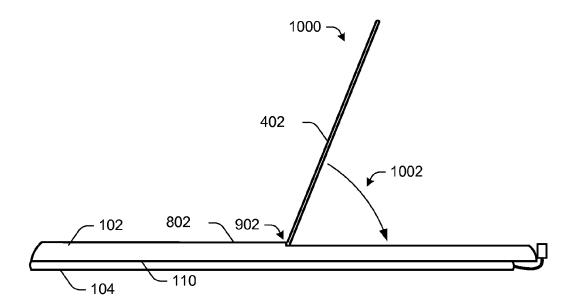
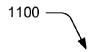
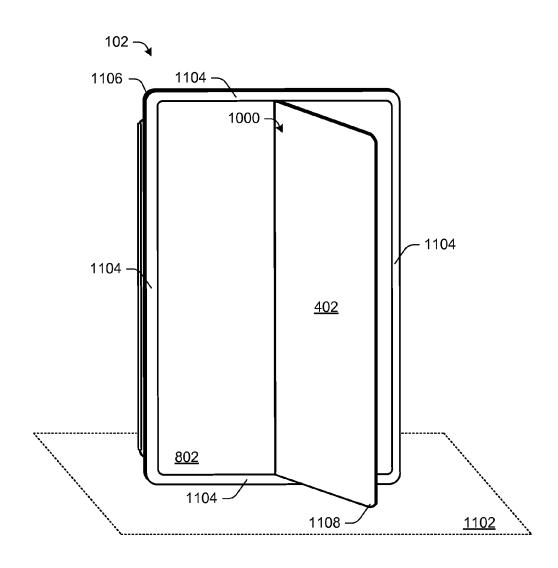




Fig. 10

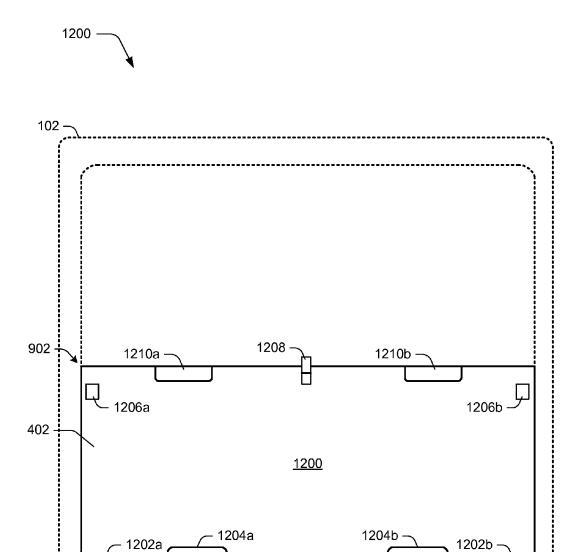


Fig. 12

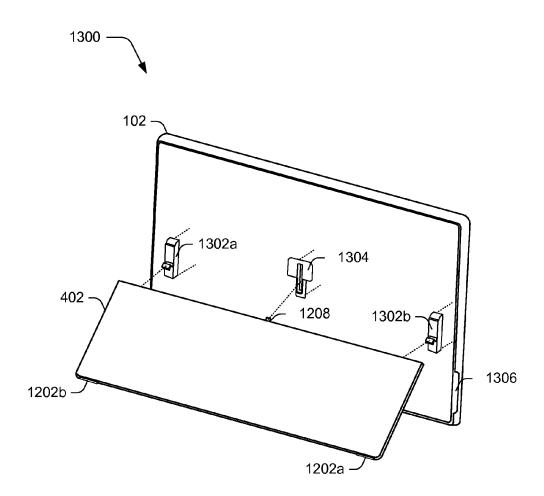


Fig. 13

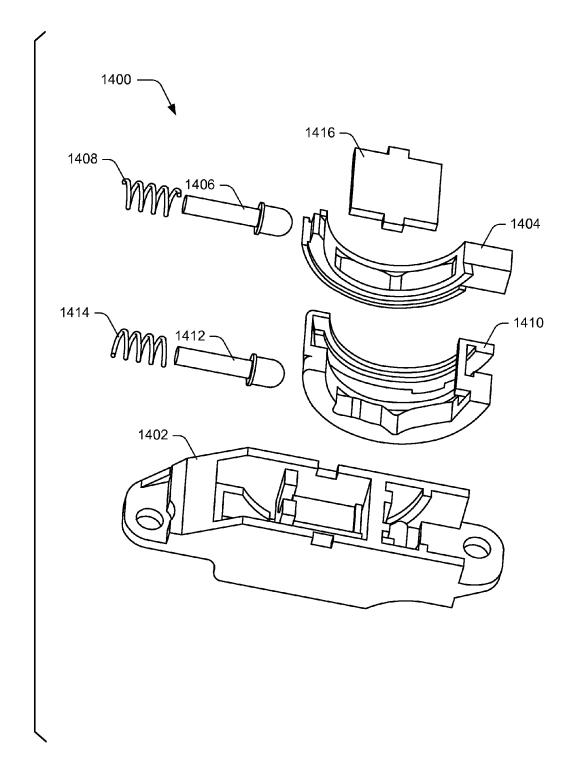
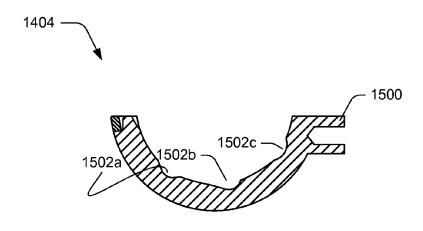



Fig. 14

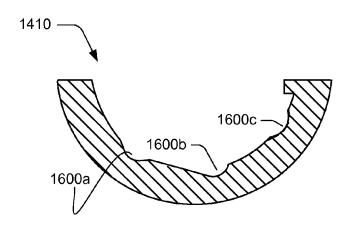


Fig. 16

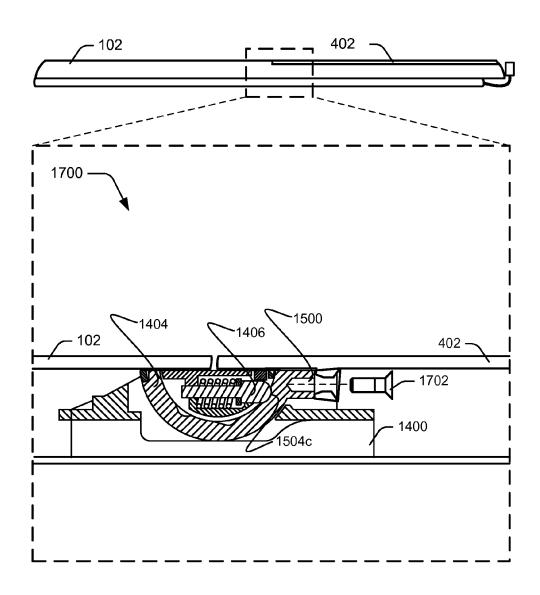


Fig. 17

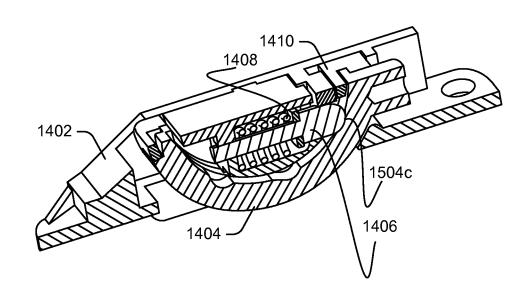


Fig. 18

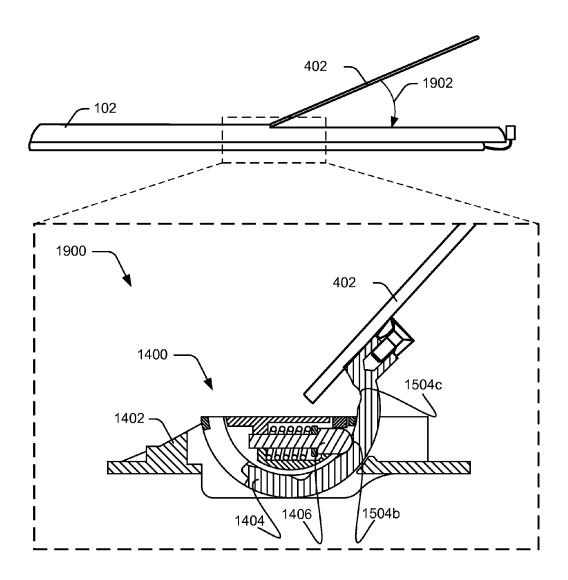
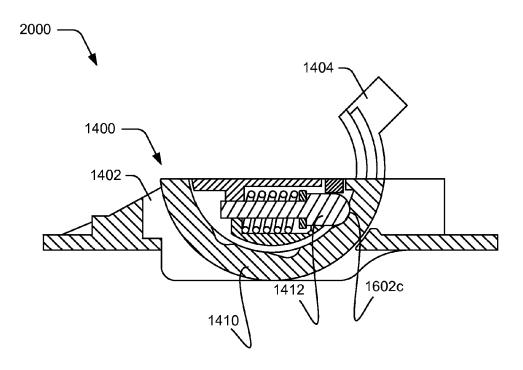
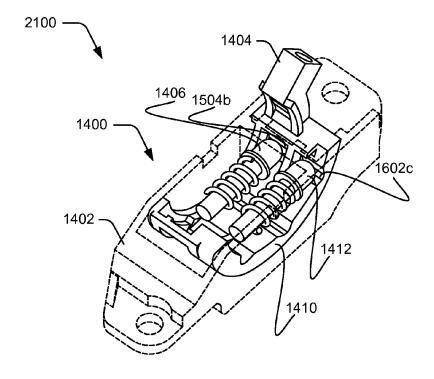




Fig. 19

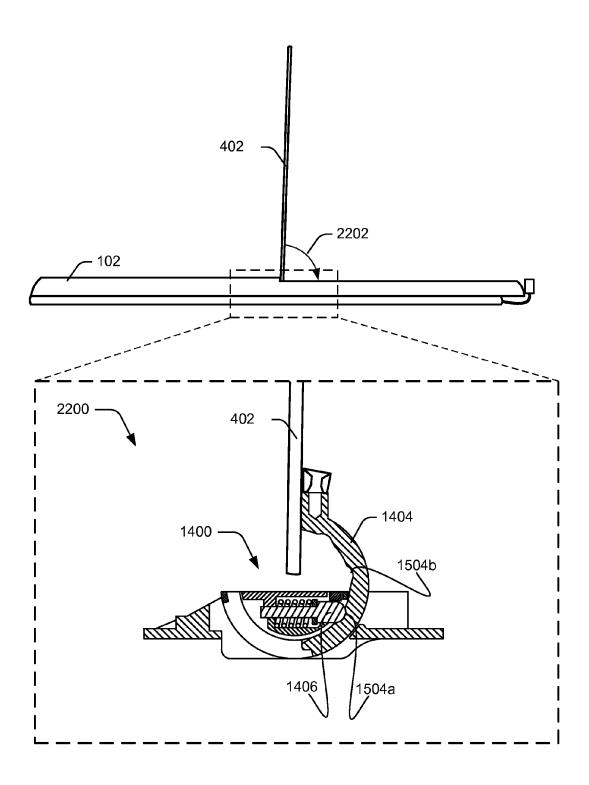
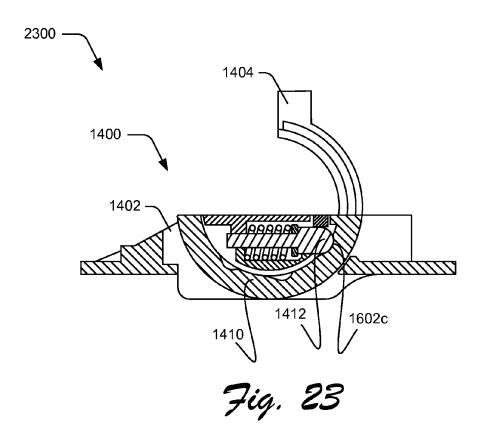
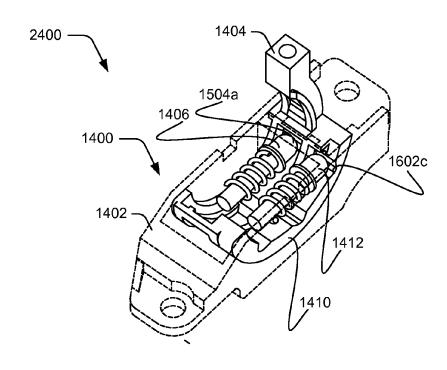




Fig. 22

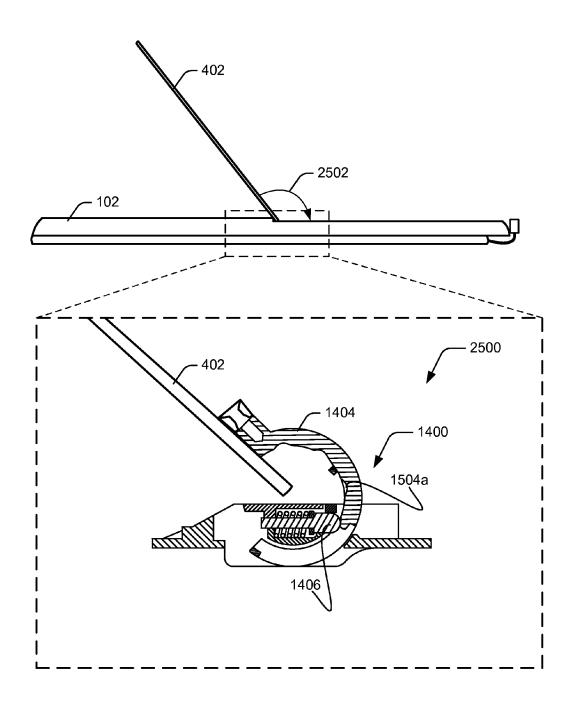
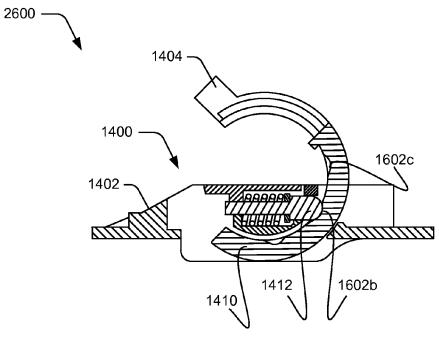
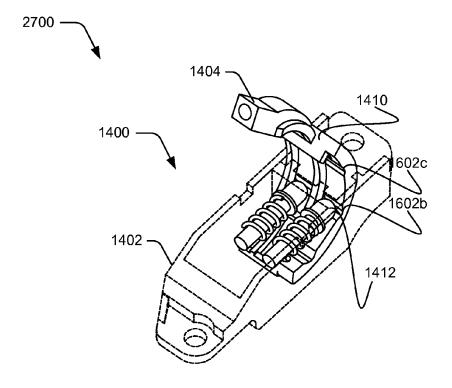




Fig. 25

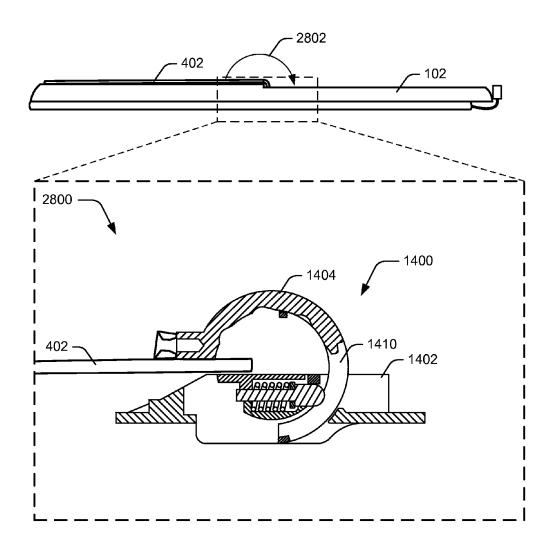
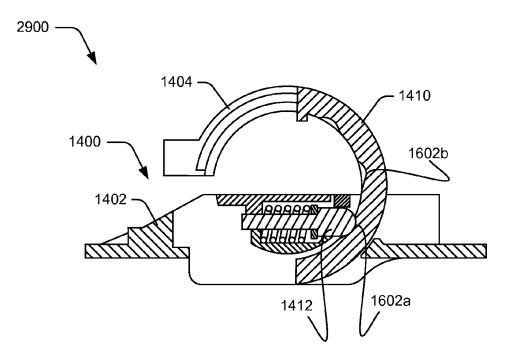
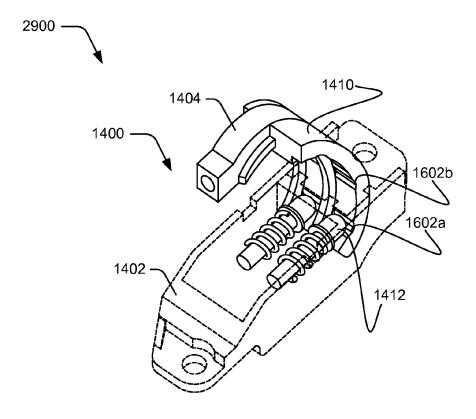
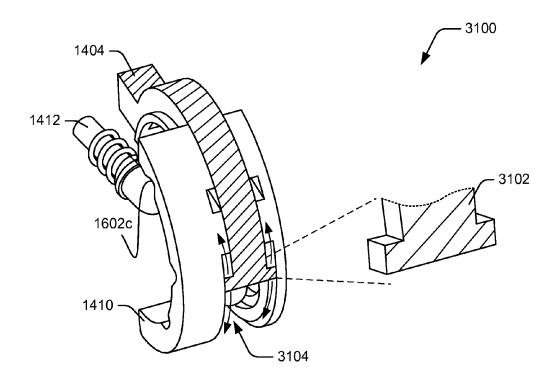
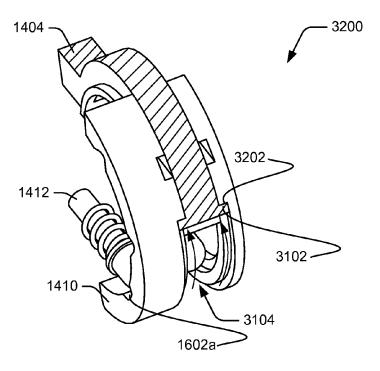






Fig. 28

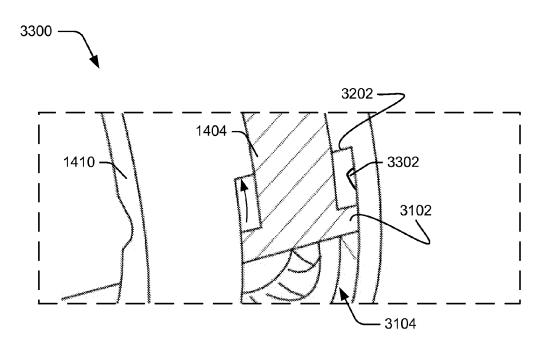


Fig. 33

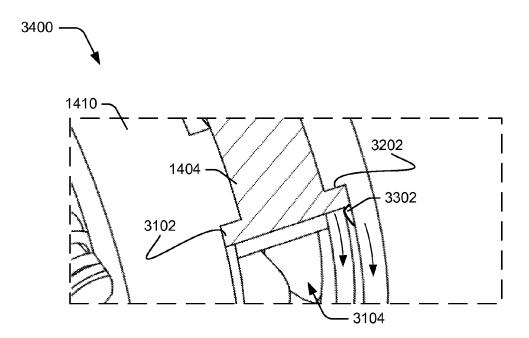
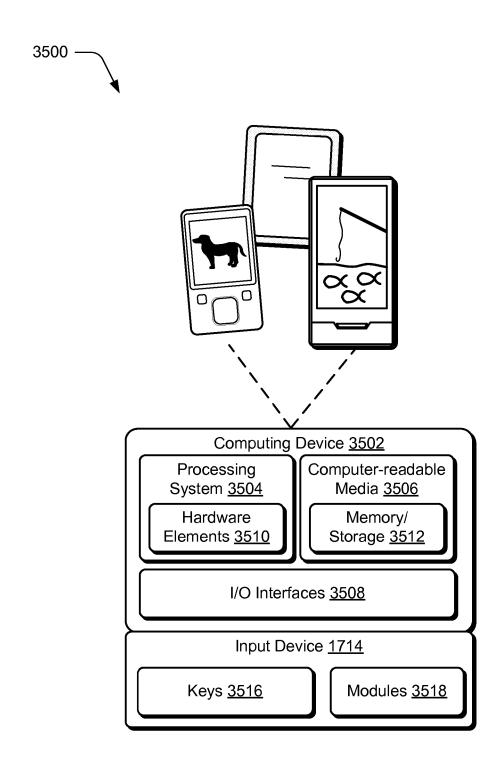



Fig. 34

Apr. 5, 2016

7ig. 35

HINGE MECHANISM FOR ROTATABLE COMPONENT ATTACHMENT

BACKGROUND

Mobile computing devices have been developed to increase the functionality that is made available to users in a mobile setting. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on.

Because mobile computing devices are configured to be mobile, however, the devices are typically designed to be used in a handheld manner. Typical ways of adapting mobile devices for other uses (e.g., on a table or other surface) tend to be awkward and detract from the mobile aesthetic associated with mobile devices.

SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

A hinge mechanism for rotatable component attachment is described. In at least some implementations, the hinge mechanism enables a support component to be adjustably attached to an apparatus, such as a computing device. For example, the hinge mechanism can be employed to rotatably attach a kickstand to a mobile computing device. The kickstand can be rotated via the hinge mechanism to various positions to provide support for different orientations of the computing device. For example, the kickstand can be positioned to support the computing device in a typing orientation such that input can be provided via an associated input device. As another example, the kickstand can be positioned to enable viewing and/or interaction with the computing device, 40 such as in a portrait viewing orientation.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.

- FIG. 1 is an illustration of an environment in an example implementation that is operable to employ the techniques 55 described herein in accordance with one or more embodiments.
- FIG. 2 depicts an example implementation of an input device of FIG. 1 as showing a flexible hinge in greater detail in accordance with one or more embodiments.
- FIG. 3 depicts an example orientation of the input device in relation to the computing device as covering a display device of the computing device in accordance with one or more embodiments.
- FIG. 4 depicts an example orientation of the input device in 65 relation to the computing device as assuming a typing orientation in accordance with one or more embodiments.

2

- FIG. 5 depicts an example orientation of the input device in relation to the computing device as covering a rear housing of the computing device 102 and exposing a display device of the computing device in accordance with one or more embodiments.
- FIG. 6 depicts an example orientation of the input device as including a portion configured to cover a rear of the computing device, which in this instance is used to support a kickstand of the computing device in accordance with one or more embodiments.
- FIG. 7 depicts an example orientation in which the input device including the portion of FIG. 6 are used to cover both the front and back of the computing device in accordance with one or more embodiments.
- FIG. 8 depicts an example orientation of a computing device with a kickstand in accordance with one or more embodiments.
- FIG. 9 depicts an example orientation of a computing device with a kickstand in accordance with one or more 20 embodiments.
 - FIG. 10 depicts an example orientation of a computing device with a kickstand in accordance with one or more embodiments.
- the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subiect matter, nor is it intended to be used as an aid in determin
 TFIG. 11 depicts a rear view of an example orientation of a computing device with a kickstand in accordance with one or more embodiments.
 - FIG. 12 depicts an example inner surface of a kickstand in accordance with one or more embodiments.
 - FIG. 13 depicts an example exploded view of a computing device with a kickstand in accordance with one or more embodiments.
 - FIG. 14 illustrates components of an example hinge mechanism in accordance with one or more embodiments.
 - FIG. **15** illustrates a section view of a hinge ring in accordance with one or more embodiments.
 - FIG. 16 illustrates a section view of a ring support in accordance with one or more embodiments.
 - FIG. 17 illustrates a partial section view of a computing device in accordance with one or more embodiments.
 - FIG. **18** illustrates a section view of a hinge in a closed position in accordance with one or more embodiments.
 - FIG. 19 illustrates a section view of a hinge in an open position in accordance with one or more embodiments.
 - FIG. 20 illustrates a section view of a hinge in a first open position in accordance with one or more embodiments.
 - FIG. 21 illustrates an overhead view of a hinge in a first open position in accordance with one or more embodiments.
 - FIG. 22 illustrates a section view of a hinge in a second open position in accordance with one or more embodiments.
 - FIG. 23 illustrates a section view of a hinge in a second open position in accordance with one or more embodiments.
 - FIG. 24 illustrates an overhead view of a hinge in a second open position in accordance with one or more embodiments.
 - FIG. **25** illustrates a section view of a hinge in a third open position in accordance with one or more embodiments.
 - FIG. 26 illustrates a section view of a hinge in a third open position in accordance with one or more embodiments.
 - FIG. 27 illustrates an overhead view of a hinge in a third open position in accordance with one or more embodiments.
 - FIG. **28** illustrates a section view of a hinge in a fourth open position in accordance with one or more embodiments.
 - FIG. 29 illustrates a section view of a hinge in a fourth open position in accordance with one or more embodiments.
 - FIG. 30 illustrates an overhead view of a hinge in a fourth open position in accordance with one or more embodiments.
 - FIG. 31 illustrates a rear view of a hinge ring and a ring support in accordance with one or more embodiments.

FIG. 32 illustrates a rear view of a hinge ring and a ring support in accordance with one or more embodiments.

FIG. 33 illustrates a rear view of a hinge ring and a ring support in accordance with one or more embodiments.

FIG. **34** illustrates a rear view of a hinge ring and a ring support in accordance with one or more embodiments.

FIG. 35 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-34 to implement embodiments of the techniques 10 described herein.

DETAILED DESCRIPTION

Overview

A variety of different devices may be physically attached to a mobile computing device to provide a variety of functionality. For example, a device may be configured to provide a cover for at least a display device of the computing device to protect it against harm. Other devices may also be physically attached to the mobile computing device, such as an input device (e.g., keyboard having a track pad) to provide inputs to the computing device. Further, functionality of these devices may be combined, such as to provide a combination cover and input device.

A hinge mechanism for rotatable component attachment is described. In at least some implementations, the hinge mechanism enables a support component to be adjustably attached to an apparatus, such as a computing device. For example, the hinge mechanism can be employed to rotatably attach a kickstand to a mobile computing device. The kickstand can be rotated via the hinge mechanism to various positions to provide support for different orientations of the computing device. For example, the kickstand can be positioned to support the computing device in a typing orientation such that input can be provided via an associated input device. As another example, the kickstand can be positioned to enable viewing and/or interaction with the computing device, such as in a portrait viewing orientation.

In at least some embodiments, a hinge mechanism utilizes 40 preset hinge positions that enable a kickstand to be placed at different preset positions. Further, an example hinge mechanism includes a center of rotation that coincides with a seam between abutting edges of the kickstand and the computing device. Thus, the kickstand can conform to a contour of the 45 computing device when in a closed position, and the seam can be maintained when the kickstand is open.

In the following discussion, an example environment is first described that may employ the techniques described herein. Embodiments discussed herein are not limited to the 50 example environment, and the example environment is not limited to embodiments discussed herein. Next, example device orientations are discussed in accordance with one or more embodiments. Following this, an example kickstand is described in accordance with one or more embodiments. So Next, example hinges for kickstand attachment are discussed in accordance with one or more embodiments. Finally, an example system and device are discussed that may implement various techniques described herein. Further, although an input device is described herein, other devices are also contemplated that do not include input functionality, such as Covers.

Example Environment

FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ the techniques described herein. The illustrated environment 100 includes an example of a computing device 102 that is physi-

4

cally and communicatively coupled to an input device 104 via a flexible hinge 106. The computing device 102 may be configured in a variety of ways. For example, the computing device 102 may be configured for mobile use, such as a mobile phone, a tablet computer as illustrated, and so on. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing device 102 may also relate to software that causes the computing device 102 to perform one or more operations. An example implementation of the computing device 102 is discussed below with reference to FIG. 35.

The computing device 102, for instance, is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by the display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.

In the illustrated example, the input device 104 is configured as having an input portion that includes a keyboard having a QWERTY arrangement of keys and track pad although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, configuration to mimic a musical instrument, and so forth. Thus, the input device 104 and keys incorporated by the input device 104 may assume a variety of different configurations to support a variety of different functionality.

As previously described, the input device 104 is physically and communicatively coupled to the computing device 102 in this example through use of a flexible hinge 106. The flexible hinge 106 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one or more directions (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the input device 104 in relation to the computing device 102. This may be used to support consistent alignment of the input device 104 in relation to the computing device 102, such as to align sensors used to change power states, application states, and so on.

The flexible hinge 106, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on. The flexible hinge 106 may be configured in a variety of ways, further discussion of which may be found in relation to the following figure.

FIG. 2 depicts an example implementation 200 of the input device 104 of FIG. 1 as showing the flexible hinge 106 in greater detail. In this example, a connection portion 202 of the input device is shown that is configured to provide a commu-

nicative and physical connection between the input device 104 and the computing device 102. The connection portion 202 as illustrated has a height and cross section configured to be received in a channel in the housing of the computing device 102, although this arrangement may also be reversed 5 without departing from the spirit and scope thereof.

The connection portion 202 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 202 is physically connected to the computing device the combination of the connection portion 202 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge

The connection portion 202 is illustrated in this example as including magnetic coupling devices 204, 206, mechanical coupling protrusions 208, 210, and communication contacts 212. The magnetic coupling devices 204, 206 are configured to magnetically couple to complementary magnetic coupling 20 devices of the computing device 102 through use of one or more magnets. In this way, the input device 104 may be physically secured to the computing device 102 through use of magnetic attraction.

The connection portion 202 also includes mechanical cou- 25 pling protrusions 208, 210 to form a mechanical physical connection between the input device 104 and the computing device 102. The communication contacts 212 are configured to contact corresponding communication contacts of the between the devices as shown.

Example Device Orientations

Through rotational movement of the flexible hinge 106, a variety of different orientations of the input device 104 in relation to the computing device 102 may be supported. For 35 example, rotational movement may be supported by the flexible hinge 106 such that the input device 104 may be placed against the display device 110 of the computing device 102 and thereby act as a cover as shown in the example orientation **300** of FIG. **3**. Thus, the input device **104** may act to protect 40 the display device 110 of the computing device 102 from

As shown in the example orientation 400 of FIG. 4, a typing arrangement may be supported. In this orientation, the input device 104 is laid flat against a surface and the computing 45 device 102 is disposed at an angle to permit viewing of the display device 110, e.g., such as through use of a kickstand 402 disposed on a rear surface of the computing device 102.

In the example orientation 500 of FIG. 5, the input device 104 may also be rotated so as to be disposed against a back of 50 the computing device 102, e.g., against a rear housing of the computing device 102 that is disposed opposite the display device 110 on the computing device 102. In this example, through orientation of the connection portion 202 to the computing device 102, the flexible hinge 106 is caused to "wrap 55 around" the connection portion 202 to position the input device 104 at the rear of the computing device 102.

This wrapping causes a portion of a rear of the computing device 102 to remain exposed. This may be leveraged for a variety of functionality, such as to permit a camera 502 posi- 60 tioned on the rear of the computing device 102 to be used even though a significant portion of the rear of the computing device 102 is covered by the input device 104 in this example orientation 500. Although configuration of the input device 104 to cover a single side of the computing device 102 at any one time was described above, other configurations are also contemplated.

6

In the example orientation 600 of FIG. 6, the input device 104 is illustrated as including a portion 602 configured to cover a rear of the computing device. This portion 602 is also connected to the connection portion 202 using a flexible hinge

The example orientation 600 of FIG. 6 also illustrates a typing arrangement in which the input device 104 is laid flat against a surface and the computing device 102 is disposed at an angle to permit viewing of the display device 110. This is supported through use of the kickstand 402 disposed on a rear surface of the computing device 102 to contact the portion 602 in this example.

FIG. 7 depicts an example orientation 700 in which the input device 104 including the portion 602 are used to cover both the front (e.g., display device 110) and back (e.g., opposing side of the housing from the display device) of the computing device 102. In one or more implementations, electrical and other connectors may also be disposed along the sides of the computing device 102 and/or the input device 104, e.g., to provide auxiliary power when closed.

Naturally, a variety of other orientations are also supported. For instance, the computing device 102 and input device 104 may assume an arrangement such that both are laid flat against a surface as shown in FIG. 1. Other instances are also contemplated, such as a tripod arrangement, meeting arrangement, presentation arrangement, and so forth.

Kickstand

The described kickstand can be employed to enable a varicomputing device 102 to form a communicative coupling 30 ety of different orientations for the computing device 102. For instance, consider the following implementations of a kickstand in accordance with various embodiments.

> FIG. 8 illustrates the orientation 300, and includes the kickstand 402 in a closed position. In the closed position, the kickstand 402 forms a portion of a rear surface 802 of the computing device 102 such that the kickstand 402 conforms to a surface contour of the computing device 102. For instance, when the kickstand 402 is in the closed position, the kickstand 402 integrates into the computing device 102 and does not protrude from a plane formed by the rear surface 802.

> FIG. 9 illustrates that the kickstand 402 can be rotated away from the rear surface 802 of the computing device 102 to a position 900. For instance, the kickstand 402 can be rotatably attached to the computing device 102 along a seam 902 via a hinge mechanism. Examples of such a hinge mechanism are detailed below.

> In at least some implementations, the position 900 corresponds to a preset position for the kickstand 402. For instance, when a user applies pressure to the kickstand 402 away from the rear surface 802, the kickstand 402 can snap into the position 900. As detailed below, a hinge mechanism employed to attach the kickstand 402 to the computing device 102 can utilize spring pressure and detent settings to provide preset open positions for the kickstand 402. In this example, the position 900 is associated with an angle 904 between the rear surface of the computing device 102, and the kickstand 402. For instance, the angle 904 can range from 20 degrees (20°) to 30 degrees) (30°). Any suitable range of angles may be employed, however.

> With the kickstand 402 in the position 900, the computing device 102 can be rotated away from the input device 104 and supported by the kickstand 402, such as illustrated in the orientation 400 of FIG. 4. Thus, the position 900 can enable the display device 110 to be viewed, and input to be provided to the computing device 102 via the input device 104.

> FIG. 10 illustrates that the kickstand 402 can be rotated away from the rear surface 802 of the computing device 102

to a position 1000. For instance, the kickstand 402 can be rotated further past the position 900 to the position 1000.

In at least some implementations, the position 1000 corresponds to a preset position for the kickstand 402. For example, when a user applies pressure to the kickstand 402 away from the rear surface 802, the kickstand 402 can snap into the position 1000. In this example, the position 1000 is associated with an angle 1002 between the rear surface of the computing device 102, and the kickstand 402. For instance, the angle 1002 can range from 65 degrees (65°) to 75 degrees (75°). Any suitable range of angles may be employed, however. Further, the seam 902 can be maintained (e.g., the width of the seam) during rotation to the position 1000.

With the kickstand 402 in the position 1000, the computing device 102 can be rotated sideways (e.g., to a portrait viewing position) and supported via the kickstand 402. For instance, consider an orientation 1100 illustrated in FIG. 11.

FIG. 11 illustrates a rear view of the computing device 102 in the orientation 1100, showing that the computing device 20 102 is rotated to a portrait viewing position, such as 90 degrees (90°) to the orientation illustrated in FIG. 1. Further, the kickstand 402 is positioned in the position 1000 such that the computing device 102 reclines back and is supported by the kickstand 402 on a surface 1102. Although not illustrated 25 here, placing the computing device 102 in the orientation 1100 can cause a view orientation of the display device 110 to be rotated to a portrait view.

In FIG. 11, the computing device 102 is illustrated without the input device 104. Thus, in at least some embodiments the 30 input device 104 can be separated from the computing device 102 such that the computing device 102 has functionality independent of the input device 104. For example, the flexible hinge 106 can employ a magnetic attachment mechanism that holds the input device 104 to the computing device 102 via 35 magnetic force. Thus, a user can grasp the computing device 102 and the input device 104, and can pull the two apart by overcoming the magnetic attraction between them.

When separate from the input device 104, the computing device 102 can provide various functionality. For example, a 40 user can view content via the computing device 102, such as movies and/or streaming content. Further, a user can interact with touch screen functionality of the display device 110. Thus, placing the kickstand 402 in the position 1000 can enable a user to place the computing device in a portrait 45 orientation, and to view and/or interact with the computing device in such an orientation.

As further illustrated in FIG. 11, the computing device 102 includes a beveled edge 1104 between the rear surface 802 and a front surface 1106. The beveled edge 1104 is angled 50 such that the width of the rear surface 802 is narrower than the width of a front surface 1106. The kickstand 402 is integrated into the rear surface 802, and has substantially the same width as the rear surface 802. Thus, the kickstand 402 has a narrower width than the front surface 1106.

Accordingly, when the computing device is positioned in the orientation 1100, and the kickstand 402 is placed in the position 1000, the computing device 102 leans back away from the front surface 1106 and rests on a corner 1108 of the kickstand 402. The corner 1108 can employ some form of cushioning material to reduce sliding of the corner 1108 on the surface 1102, and to reduce the transmission of vibrations between the surface 1102 and the computing device 102.

FIG. 12 illustrates a view of an inner surface 1200 of the kickstand 402 in accordance with one or more embodiments. 65 In this example, the kickstand 402 is illustrated in the context of an outline of the computing device 102.

8

The inner surface 1200 includes surface contacts 1202a and 1202b, which function as surface contact points when the kickstand 402 is in an open position. The surface contacts 1202a, 1202b can be formed using a variety of types of skid-resistant materials, and can be positioned within a notch in the inner surface 1200. For example, the surface contacts 1202a, 1202b can be formed from an elastic material and can be substantially dovetail shaped such that the surface contacts can be held within a notch in the rear surface 1200 via elastic pressure. Additionally or alternatively, the surface contacts 1202a, 1022b can be affixed to the inner surface 1200 via a suitable adhesive.

The surface contacts 1202a, 1202b are positioned on a bottom edge of the kickstand 402 such that when the kickstand 402 is open and resting on a surface, the surface contacts 1202a, 1202b serve as insulators between the kickstand 402 and the surface. For example, the surface contacts 1202a, 1202b can reduce the transmission of vibrations between the kickstand 402 and an adjacent surface. Further, the surface contacts 1202a, 1202b can reduce slippage of the kickstand 402 on a surface. For instance, the surface contacts 1202a, 1202b can be formed from a rubberized material that resists slippage on a variety of different surfaces. Thus, when the computing device 102 is supported by the kickstand 402 (e.g., in the orientation 400 discussed above), the surface contacts 1202a, 1202b can assist in stabilizing the computing device 102 and reduce noise that can be caused by vibration of the kickstand 402 on a surface.

Further included on the inner surface 1200 are a stabilizer plate 1204a and a stabilizer plate 1204b, which are placed along a lower edge of the inner surface 1200 and formed from a material (e.g., ferromagnetic) that is attracted to a magnetic field. When the kickstand 402 is in a closed position, the stabilizer plates 1204a, 1204b are attracted to magnets placed along an adjacent edge of the computing device 102. Thus, in the closed position the magnetic force exerted by the magnets on the stabilizer plates 1204a, 1204b can assist in holding the lower edge of the kickstand 402 against the computing device 102

The inner surface 1200 further includes peripheral hinge mounts 1206a, 1206b, which function as mounting points for hinge mechanisms that are employed to attach the kickstand 402 to the computing device 102. Examples of hinge mechanisms are discussed below. A center hinge key 1208 is also included, which functions as slidable attachment to a center hinge employed between the kickstand 402 and the computing device 102.

A damper 1210a and a damper 1210b are fastened (e.g., using a suitable adhesive) to the inner surface 1200, and 50 function to suppress vibration of the kickstand 402. For example, the dampers 1210a, 1210b can be formed from a material that absorbs and/or dissipates vibrations of the kickstand 402. Examples of such materials include urethane foam, rubber, neoprene, silicone, and so on. Thus, the dampers 1210a, 1210b can reduce noise caused by vibration of the kickstand 402, such as when the kickstand 402 is being opened and closed.

Hinges for Component Attachment

from the front surface 1106 and rests on a corner 1108 of the kickstand 402. The corner 1108 can employ some form of 60 cushioning material to reduce sliding of the corner 1108 on the surface 1102, and to reduce the transmission of vibrations arrangements are discussed below.

A variety of different hinge mechanisms can be employed for attaching various components in accordance with various embodiments. Some example hinge mechanisms and hinge arrangements are discussed below.

FIG. 13 illustrates an exploded rear view 1300 of the computing device 102 and the kickstand 402. Included in the rear view 1300 are peripheral hinges 1302a and 1302b, which can be employed to attach the kickstand 402 to the computing device 102. The peripheral hinges 1302a, 1302b are config-

ured to be installed internally in the computing device 102, such as via a suitable attachment method and/or device.

The kickstand 402 can be attached to a pivoting portion of the peripheral hinges 1302a, 1302b via the peripheral hinge mounts **1206***a*, **1206***b*, discussed above with reference to FIG. 12. Thus, attachment to the peripheral hinges 1302a, 1302b enables the kickstand 402 to pivot between various positions with reference to the computing device 102.

Further illustrated is a center hinge 1304, which is also configured to be installed internally in the computing device 102, such as via a suitable attachment method and/or device. The center hinge key 1208 of the kickstand 402 can be engaged in the center hinge 1304.

The peripheral hinges 1302a, 1302b and the center hinge 1304 are installed in the computing device 102 such that when the kickstand 402 is rotated on the hinges to a closed position, the hinges are not visible and the kickstand 402 forms a smooth contour with the chassis of the computing device 102. For example, see the closed position illustrated and discussed 20 with reference to FIG. 8.

Also illustrated in the rear view 1300 are the surface contacts 1202a, 1202b. As discussed above, the surface contacts 1202a, 1202b can stabilize the kickstand 402 and the computing device 102 when the kickstand 402 is in an open 25 position and resting on a surface. In at least some embodiments, the surface contacts 1202a, 1202b are positioned in a groove in an inner surface of the kickstand 402 such that the surface contacts 1202a, 1202b are not externally visible when the kickstand 402 is in a closed position.

To assist a user in opening the kickstand 402 from a closed position, a notch 1306 is formed in an edge of the computing device 102. For instance, the notch 1306 can enable a user to insert a small portion of a finger behind the closed kickstand **402**, and apply pressure to rotate the kickstand **402** to an open 35 position. Additionally or alternatively, a notch can be formed in an edge of the kickstand 402 to assist in opening the kickstand 402.

FIG. 14 illustrates components of an example hinge 1400 in accordance with one or more embodiments. The hinge 40 1400, for instance, can represent an implementation of the peripheral hinges 1302a, 1302b discussed above. This is not intended to be limiting, however, and the hinge 1400 can be employed as a hinge mechanism for a variety of different components and attachment scenarios. Further, the hinge 45 1400 and its various components can be formed using any suitable material, such as metals, plastics, polymers, alloys, and so forth.

Components of the hinge 1400 include a hinge frame 1402 in which various other components of the hinge 1400 can be 50 disposed. For example, the hinge frame 1402 can be mounted to a device (e.g., the computing device 102) and function as a support structure for other components of the hinge 1400.

Further included is a hinge ring 1404, which can be rotatably and/or movably positioned within the hinge frame 1402. 55 In at least some embodiments, a kickstand (e.g., the kickstand 402) can be attached to the hinge ring 1404. Movement of the hinge ring 1404 within the hinge frame 1402 can enable an attached kickstand to be placed in various positions relative to an attached device.

Operably associated with the hinge ring 1404 are a hinge ring follower 1406 and a hinge ring spring 1408, which can be positioned relative to the hinge ring 1404 to apply pressure to the hinge ring 1404. As detailed below, pressure from the hinge ring spring 1408 and the hinge ring follower 1406 can 65 in accordance with one or more embodiments. The ring supenable the hinge ring 1404 (and thus an attached kickstand) to maintain preset positions relative to an attached device.

10

The hinge 1400 further includes a ring support 1410, which can be movably positioned within the hinge frame 1402. In at least some embodiments, the ring support 1410 provides structural support for the hinge ring 1404. For instance, when the hinge ring 1404 is pivoted open to certain positions, the ring support 1410 can stabilize the hinge ring 1404 and thus an attached component, e.g., a kickstand. Stabilization of the hinge ring 1404 via the ring support 1410 is discussed in more detail below.

Operably associated with the ring support 1410 are a ring support follower 1412 and a ring support spring 1414, which can be positioned relative to the ring support 1410 to apply pressure to the ring support 1410. As detailed below, pressure from the ring support spring 1414 and the ring support follower 1412 can enable the ring support 1410 and the hinge ring 1404 to maintain preset positions relative to an attached

The hinge 1400 includes a hinge cap 1416, which can be attached to the hinge frame 1402 to secure other components of the hinge 1400 within the hinge frame 1402.

FIG. 15 illustrates a section view of the hinge ring 1404 in accordance with one or more embodiments. The hinge ring 1404 includes a hinge ring mount 1500, to which various components can be mounted. For example, the kickstand 402 can be attached to the hinge ring mount 1500.

Various attachment techniques can be utilized to attach components to the hinge ring mount 1500. For instance, the hinge ring mount 1500 can be threaded to accept a screw, bolt, or other threaded fastener. With reference to the kickstand 402, for example, a threaded fastener can be used to attach one of the peripheral hinge mounts **1206***a*, **1206***b* to the hinge ring mount 1500. Other types of attachment techniques may alternatively or additionally be employed.

For instance, in at least some embodiments magnetic force may be employed to hold a peripheral hinge mount to the hinge ring mount 1500. A peripheral hinge mount and the ring mount 1500, for example, can include magnetic material, e.g., magnets, ferromagnetic materials, and so forth. Thus, in such embodiments, when a peripheral hinge mount is aligned with the ring mount 1500, magnetic force can removably bind the peripheral hinge mount to the ring mount 1500.

Magnets can thus be employed in some embodiments to attach the kickstand 402 to hinge assemblies (e.g., the hinge 1400) such that kickstand 402 can be detached from an associated device. This can enable a device (e.g., the computing device 102) to be customized in various ways, such as by replacing the kickstand 402 with a different kickstand of a different color, different graphics, different materials, and so

The hinge ring 1404 further includes ring notches 1502a, 1502b, and 1502c. In at least some implementations, the ring notches 1502a, 1502b, and 1502c correspond to preset positions for the hinge ring 1404. For instance, when the hinge ring rotates within the hinge 1400, pressure from the hinge ring spring 1408 can cause the hinge ring follower 1406 to catch in a respective notch of the ring notches 1502a, 1502b, and 1502c. The ring notches 1502a, 1502b, and 1502c, for example, can correspond to preset positions for the kickstand 402. While the hinge ring 1404 is illustrated as included three 60 ring notches, it is to be appreciated that embodiments can include any suitable number of ring notches in accordance with the claimed embodiments. Further example features of the hinge ring **1404** are presented below.

FIG. 16 illustrates a section view of the ring support 1410 port 1410 further includes support notches 1600a, 1600b, and 1600c. In at least some implementations, the support notches

1600a, 1600b, and 1600c correspond to preset positions for the ring support 1410. For instance, when the ring support 1410 rotates within the hinge 1400, pressure from the ring support spring 1414 can cause the ring support follower 1412 to catch in a respective notch of the support notches 1600a, 51600b, and 1600c. The support notches 1600a, 1600b, and 1600c, for example, can correspond to preset positions for the kickstand 402.

While the ring support **1410** is illustrated as included three support notches, it is to be appreciated that embodiments can 10 include any suitable number of support notches in accordance with the claimed embodiments. Further example features of the ring support **1410** are presented below.

FIG. 17 illustrates a partial section view of the computing device 102, generally at 1700. The view 1700 includes a cross section of the hinge 1400 with the kickstand 402 is in a closed position.

As illustrated, the kickstand **402** can be attached to the hinge ring mount **1500** using a screw **1702**. However, a wide variety of attachment techniques may be employed in accordance with the claimed embodiments, examples of which are discussed above.

Further illustrated in the view **1700** is that the hinge ring follower **1406** is positioned in the ring notch **1502**c of the hinge ring **1404**. Pressure from the hinge ring follower **1406** 25 against the ring notch **1502**c holds the hinge **1400**, and thus the kickstand **402**, in a closed position. A user may open the kickstand **402** by applying pressure to the kickstand **402** sufficient to overcome the static friction applied by the hinge ring follower **1406** against the ring notch **1502**c.

FIG. 18 illustrates a section view 1800 of the hinge 1400 in a closed position, such as illustrated with reference to FIG. 17. For ease of viewing, the hinge 1400 is illustrated separate from an attached device and kickstand.

Illustrated as part of the view **1800** are the hinge frame 35 **1402**, the hinge ring **1404**, and the ring support **1410**. Further illustrated is that the hinge ring spring **1408** applies pressure to the hinge ring follower **1406**, which in turn applies pressure to the hinge ring **1404** at the ring notch **1502**c. As discussed above, pressure on the ring notch **1502**c holds the hinge **1400** 40 in a closed position, and thus holds an attached component (e.g., the kickstand **402**) in a closed position.

FIG. 19 illustrates a section view 1900 of the hinge 1400 in an open position. For example, the view 1900 can correspond to an open position of the kickstand 402 relative to the computing device 102. For ease of viewing, the hinge 1400 is illustrated with the kickstand 402 attached but separate from the computing device 102.

Further to the view **1900**, the hinge ring follower **1406** has been disengaged from the ring notch **1502**c of the hinge ring 50 **1404**, and engaged with the ring notch **1502**b. For example, a user can apply pressure to the kickstand **402** away from the computing device **102** to cause the kickstand **402** to transition to a first open position. Thus, engagement of the hinge ring follower **1406** with the ring notch **1502**b can correspond to a first open position for the hinge **1400**, and thus the kickstand **402**. Pressure applied by the hinge ring spring **1408** against the hinge ring follower **1406** holds the hinge ring follower in the ring notch **1502**b, and thus holds the kickstand **402** in the first open position.

In at least some embodiments, the first open position can correspond to an angle 1902 with reference to the kickstand 402 and the computing device 102. For example, the angle 1902 can correspond to angle from 40 degrees to 50 degrees, e.g., 45 degrees.

FIG. 20 illustrates a section view 2000 of the hinge 1400 in the first open position, as discussed above with reference to

12

FIG. 19. For ease of viewing, the hinge 1400 is illustrated in the view 2000 separate from an associated device and kickstand.

The view 2000 illustrates that in the first open position, the hinge ring 1404 is rotated to an open position. The ring support 1410, however, remains in a closed position within the hinge frame 1402. For instance, in the first open position of the hinge 1400, the ring support follower 1412 remains engaged in the support notch 1600c of the ring support 1410.

FIG. 21 illustrates an overhead view 2100 of the hinge 1400 in the first open position, as discussed above with reference to FIGS. 19 and 20. For ease of viewing, the hinge 1400 is illustrated in the view 2100 separate from an associated device and kickstand. Further, the hinge frame 1402 is illustrated via dashed lines.

The view 2100 illustrates that in the first open position for the hinge 1400, the hinge ring follower 1406 is engaged in the ring notch 1502b of the hinge ring 1404. Further illustrated is that the ring support follower 1412 is engaged in the support notch 1600c of the ring support 1410.

FIG. 22 illustrates a section view 2200 of the hinge 1400 in a second open position. For example, the view 2200 can correspond to a second open position of the kickstand 402 relative to the computing device 102. For ease of viewing, the hinge 1400 is illustrated with the kickstand 402 attached but separate from the computing device 102.

Further to the view 2200, the hinge ring follower 1406 has been disengaged from the ring notch 1502b of the hinge ring 1404, and engaged with the ring notch 1502a. For example, a user can apply pressure to the kickstand 402 to cause the kickstand 402 to transition to a second open position. Thus, engagement of the hinge ring follower 1406 with the ring notch 1502a can correspond to a second open position for the hinge 1400, and thus the kickstand 402. Pressure applied by the hinge ring spring 1408 against the hinge ring follower 1406 holds the hinge ring follower 1406 in the ring notch 1502a, and thus holds the kickstand 402 in the second open position.

In at least some embodiments, the second open position can correspond to an angle 2202 with reference to the kickstand 402 and the computing device 102. For example, the angle 2202 can correspond to angle from 85 degrees to 95 degrees, e.g., 90 degrees.

FIG. 23 illustrates a section view 2300 of the hinge 1400 in the second open position, as discussed above with reference to FIG. 22. For ease of viewing, the hinge 1400 is illustrated in the view 2300 separate from an associated device and kickstand.

The view 2300 illustrates that in the second open position, the hinge ring 1404 is rotated to the second open position as discussed above. Similar to the first open position, the ring support 1410 remains in a closed position within the hinge frame 1402. For instance, in the second open position of the hinge 1400, the ring support follower 1412 remains engaged in the support notch 1600c of the ring support 1410.

FIG. 24 illustrates an overhead view 2400 of the hinge 1400 in the second open position, as discussed above with reference to FIGS. 22 and 23. For ease of viewing, the hinge 1400 is illustrated in the view 2400 separate from an associated device and kickstand. Further, the hinge frame 1402 is illustrated via dashed lines.

The view **2400** illustrates that in the second open position for the hinge **1400**, the hinge ring follower **1406** is engaged in the ring notch **1502**a of the hinge ring **1404**. Further illustrated is that the ring support follower **1412** is engaged in the support notch **1600**c of the ring support **1410**. Thus, in the

second open position, the ring support 1410 remains in a closed position within the hinge frame 1402.

FIG. 25 illustrates a section view 2500 of the hinge 1400 in a third open position. For example, the view 2500 can correspond to a third open position of the kickstand 402 relative to 5 the computing device 102. For ease of viewing, the hinge 1400 is illustrated with the kickstand 402 attached but separate from the computing device 102. Further to the view 2500, the hinge ring follower 1406 is disengaged from the ring notch 1502a of the hinge ring 1404 to enable the kickstand 10 **402** to be positioned in the third open position.

In at least some embodiments, the third open position can correspond to an angle 2502 with reference to the kickstand 402 and the computing device 102. For example, the angle 2502 can correspond to angle from 130 degrees to 140 15 degrees, e.g., 135 degrees.

FIG. 26 illustrates a section view 2600 of the hinge 1400 in the third open position, as discussed above with reference to FIG. 25. For ease of viewing, the hinge 1400 is illustrated in the view 2600 separate from an associated device and kick- 20

The view 2600 illustrates that in the third open position, the hinge ring 1404 is rotated as discussed above. Further to the third open position, the ring support 1410 is rotated within the disengages from the support notch 1600c, and engages with the support notch 1600b. For instance, when the hinge ring 1404 rotates from the second open position to the third open position, a catch mechanism on the hinge ring 1404 can engage the ring support 1410 and cause the ring support 1410 30 to rotate within the hinge frame 1402 to the third open position. An example catch mechanism is illustrated below with reference to FIGS. 31 and 32.

FIG. 27 illustrates an overhead view 2700 of the hinge 1400 in the third open position, as discussed above with 35 reference to FIGS. 25 and 26. For ease of viewing, the hinge 1400 is illustrated in the view 2700 separate from an associated device and kickstand. Further, the hinge frame 1402 is illustrated via dashed lines.

The view **2700** illustrates that in the transition to the third 40 open position, the hinge ring 1404 catches the ring support 1410 and causes the ring support 1410 to rotate within the hinge frame 1402 to an open position. As a result, the ring support follower 1412 disengages from the support notch 1600c, and engages with the support notch 1600b. In the third 45 open position, the ring support 1410 serves as a stabilizing structure for the hinge ring 1404. Thus, an attached component (e.g., the kickstand 402) can be stabilized in the third open position.

FIG. 28 illustrates a section view 2800 of the hinge 1400 in 50 a fourth open position. For example, the view 2800 can correspond to a fourth open position of the kickstand 402 relative to the computing device 102. For ease of viewing, the hinge 1400 is illustrated in the view 2800 with the kickstand 402 attached but separate from the computing device 102. Further 55 to the view 2800, the hinge ring 1404 is rotated to enable the kickstand 402 to be positioned in the fourth open position. As further discussed below, rotation of the hinge ring 1404 to the fourth open position causes the ring support 1410 to rotate within the hinge frame 1402 to the fourth open position for the 60 hinge 1400.

In at least some embodiments, the fourth open position can correspond to an angle 2802 with reference to the kickstand 402 and the computing device 102. For example, the angle 2802 can be 180 degrees. In the fourth open position, for 65 example, the kickstand 402 can be positioned against a rear surface of the computing device 102.

14

FIG. 29 illustrates a section view 2900 of the hinge 1400 in the fourth open position, as discussed above with reference to FIG. 28. For ease of viewing, the hinge 1400 is illustrated in the view 2900 separate from an associated device and kick-

The view 2900 illustrates that in the fourth open position, the hinge ring 1404 is rotated to the fourth open position as discussed above. Further to the fourth open position, the ring support 1410 is rotated within the hinge frame 1402 such that the ring support follower 1412 disengages from the support notch 1600b, and engages with the support notch 1600a. For instance, when the hinge ring 1404 rotates from the third open position to the fourth open position, a catch mechanism on the hinge ring 1404 that engages the ring support 1410 causes the ring support 1410 to rotate within the hinge frame 1402 to the fourth open position. An example catch mechanism is illustrated below with reference to FIGS. 31 and 32.

FIG. 30 illustrates an overhead view 3000 of the hinge 1400 in the fourth open position, as discussed above with reference to FIGS. 28 and 29. For ease of viewing, the hinge 1400 is illustrated in the view 3000 separate from an associated device and kickstand. Further, the hinge frame 1402 is illustrated via dashed lines.

The view 3000 illustrates that in the transition to the fourth hinge frame 1402 such that the ring support follower 1412 25 open position, a catch mechanism on the hinge ring 1404 pulls the ring support 1410 and causes the ring support 1410 to rotate within the hinge frame 1402 to the fourth open position. As a result, the ring support follower 1412 disengages from the support notch 1600b, and engages with the support notch 1600a. In the fourth open position, the ring support 1410 serves as a stabilizing structure for the hinge ring 1404. Thus, an attached component (e.g., the kickstand 402) can be stabilized in the fourth open position.

> FIG. 31 illustrates a rear view 3100 of the hinge ring 1404 and the ring support 1410. For ease of viewing, the hinge ring 1404 and the ring support 1410 are illustrated separately from other components of the hinge 1400. In at least some embodiments, the view 3100 represents a position of the hinge ring 1404 and the ring support 1410 when the hinge 1400 is in an open position, e.g., one of the open position one or open position two, discussed above. As discussed above, when the hinge 1400 is in a closed position, the open position one, or the open position two, the ring support follower 1412 is engaged in the support notch 1600c, as illustrated in the view 3100.

> In the view 3100, the hinge ring 1404 includes a support catch 3102, which functions as a catch mechanism for engaging the ring support 1410 when the hinge ring 1404 is rotated to certain positions. The support catch 3102 is slidably disposed in a support slot 3104 of the ring support. In certain positions the hinge ring 1404 can slide within the support slot 3104 without causing movement of the ring support 1410, e.g., between a closed position and the open position two of the hinge 1400.

> FIG. 32 illustrates a rear view 3200 of the hinge ring 1404 and the ring support 1410. For ease of viewing, the hinge ring 1404 and the ring support 1410 are illustrated separately from other components of the hinge 1400. In at least some embodiments, the view 3200 represents a position of the hinge ring 1404 and the ring support 1410 when the hinge 1400 is in an open position, e.g., one of the open position three or open position four, discussed above.

> In the view 3200, the hinge ring 1404 slides within the support slot 3104 such that the support catch 3102 engages a slot stop 3202 in the support slot 3104. As illustrated, the slot stop 3202 is narrower than the support catch 3102, and thus the support catch 3102 engages with the slot stop 3202 in

certain open positions of the hinge 1400. When the hinge ring 1404 rotates within the hinge 1400 in a direction such that the support catch 3102 engages with the slot stop 3202, further movement in that direction causes the ring support 1410 to rotate within the hinge 1400. For example, when a user repositions a kickstand that is mounted to the hinge ring 1404 with the support catch 3102 engaged in the slot stop 3202, resulting rotation of the hinge ring 1404 causes the ring support 1410 to rotate.

In this particular example, the view **3200** represents the fourth open position of the hinge **1400**, as indicated by the engagement of the ring support follower **1412** with the support notch **1600***a* of the ring support **1410**. Thus, force applied by the support catch **3102** against the slot stop **3202** causes the ring support **1410** to rotate between various positions.

In at least some embodiments, the ring support 1410 may also include a lower catch mechanism such that when the hinge ring 1404 is rotated towards a closed position (e.g., from the fourth open position), the support catch 3102 20 engages the lower catch mechanism such that the ring support 1410 is corresponding rotated towards a closed position within the hinge 1400. For instance, consider the following embodiments.

FIG. 33 illustrates a rear view 3300 of portions of the ring 25 support 1410 and the hinge ring 1404. Further illustrated is a return catch 3302, which is attached to and/or formed as a portion of the ring support 1410. The return catch 3302 protrudes inward into the support slot 3104. The return catch 3302 can be formed from various materials, such as rubber 30 and/or other elastically deformable materials. In at least some embodiments, the return catch 3302 can be formed as a portion of the ring support 1410, and can thus be formed from the same material as the ring support 1410.

In at least some embodiments, when the hinge ring 1404 35 rotates towards an open position (e.g., towards the fourth open position discussed above), the support catch 3102 engages the return catch 3302. For instance, pressure from the support catch 3102 against the return catch 3302 can cause a slight deformation of the return catch 3302 such that the 40 support catch 3102 can slide past the return catch 3302 to engage the slot stop 3202. For instance, consider the following illustration.

FIG. 34 illustrates a rear view 3400 of portions of the ring support 1410 and the hinge ring 1404. In the view 3400, the hinge ring 1404 is rotated within the support slot 3104 past the return catch 3302 such that the support catch 3102 engages the slot stop 3202. As referenced above, the return catch 3302 can be formed from an elastic material. Thus, pressure from the support catch 3102 causes an elastic deformation of the return catch 3302 such that the support catch 3102 can rotate past the return catch 3302. The view 3400, for example, can represent an orientation of the ring support 1410 and the hinge ring 1402 in the fourth open position, discussed above.

As illustrated in the view 3400, the return catch 3302 is 55 positioned on the ring support 1410 such that when the support catch 3102 is engaged with the slot stop 3202, a rear edge of the return catch 3302 applies pressure to the support catch 3102. Accordingly, when the hinge ring 1402 is rotated back towards a closed position, pressure from the support catch 3102 against the return catch 3302 causes the ring support 1410 to rotate towards a closed position within the hinge 1400. In at least some embodiments, this can enable the ring support 1410 to return from a fully open position (e.g., the fourth open position) such that the ring support 1410 can 65 engage with the ring support follower 1412 (discussed above) in various positions of the hinge 1400.

16

Thus, embodiments discussed herein provide a stable hinge mechanism that enables an attached component (e.g., a kickstand) to be adjusted between multiple preset positions. It is to be appreciated that the example device orientations, kickstand positions, hinge positions, hinge stop positions, and so forth discussed above are presented for purposes of example only. Thus, a wide variety of different device orientations, kickstand positions, hinge positions, and hinge stop positions not specifically mentioned herein may be implemented within the spirit and scope of the claimed embodiments. For instance, an attachment mechanism used to attach a kickstand to a computing device (e.g., the peripheral hinges discussed above) can include any number and/or configuration of suitable stop positions to enable the kickstand to be opened to a variety of different positions to support various orientations of a computing device. Further, example hinges can be attached at any suitable position and/or portion of a kickstand and/or computing device in accordance with the claimed embodiments.

Example System and Device

FIG. 35 illustrates an example system generally at 3500 that includes an example computing device 3502 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. The computing device 3502 may be, for example, be configured to assume a mobile configuration through use of a housing formed and size to be grasped and carried by one or more hands of a user, illustrated examples of which include a mobile phone, mobile game and music device, and tablet computer although other examples are also contemplated.

The example computing device 3502 as illustrated includes a processing system 3504, one or more computer-readable media 3506, and one or more I/O interface 3508 that are communicatively coupled, one to another. Although not shown, the computing device 3502 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.

The processing system 3504 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 3504 is illustrated as including hardware element 3510 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 3510 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.

The computer-readable storage media 3506 is illustrated as including memory/storage 3512. The memory/storage 3512 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 3512 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 3512 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash

memory, a removable hard drive, an optical disc, and so forth). The computer-readable media **3506** may be configured in a variety of other ways as further described below.

Input/output interface(s) 3508 are representative of functionality to allow a user to enter commands and information to 5 computing device 3502, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., 10 capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device 15 (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 3502 may be configured in a variety of ways to support user interaction.

The computing device 3502 is further illustrated as being 20 communicatively and physically coupled to an input device 3514 that is physically and communicatively removable from the computing device 3502. In this way, a variety of different input devices may be coupled to the computing device 3502 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 3514 includes one or more keys 3516, which may be configured as pressure sensitive keys, mechanically switched keys, and so forth.

The input device **3514** is further illustrated as include one 30 or more modules **3518** that may be configured to support a variety of functionality. The one or more modules **3518**, for instance, may be configured to process analog and/or digital signals received from the keys **3516** to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device **3514** for operation with the computing device **3502**, and so on

Various techniques may be described herein in the general context of software, hardware elements, or program modules. 40 Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms "module," "functionality," and "component" as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.

An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 3502. By way of example, and not limitation, computer-readable media may include "computer-readable storage media" and "computer-readable signal media."

"Computer-readable storage media" may refer to media and/or devices that enable persistent storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to nonsignal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data 65 structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may

18

include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.

"Computer-readable signal media" may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device **3502**, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term "modulated data signal" means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.

As previously described, hardware elements 3510 and computer-readable media 3506 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.

Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 3510. The computing device 3502 may be configured to implement particular instructions and/ or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 3502 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 3510 of the processing system 3504. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 3502 and/or processing systems 3504) to implement techniques, modules, and examples described herein.

CONCLUSION

Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

What is claimed is:

- 1. An apparatus comprising:
- a kickstand configured to be rotatably attached to a rear portion of a computing device; and

19

- at least one hinge that attaches a portion of the kickstand to 5 the rear portion of the computing device, the hinge being configured to be held in two or more preset open positions such that the kickstand is positionable relative to the computing device according to the two or more preset open positions, the hinge including:
 - a hinge ring attached to the kickstand and that is rotatable in conjunction with the kickstand;
 - a hinge ring follower that applies pressure against the hinge ring to cause the hinge ring follower to engage in one or more notches on a surface of the hinge ring 15 to hold the hinge ring in a preset open position of the two or more preset open positions; and
 - a spring positioned against the hinge ring follower and that applies pressure against the hinge ring follower to
- 2. An apparatus as recited in claim 1, wherein the hinge further comprises:
 - a hinge frame;
 - a ring support rotatably disposed at least partially within 25 the hinge frame, the hinge ring being rotatably disposed relative to the ring support such that rotation of the hinge ring to a particular position relative to the ring support causes the hinge ring to engage the ring support, and further rotation of the hinge ring beyond the particular 30 position causes corresponding rotation of the ring support with respect to the hinge frame.
- 3. An apparatus as recited in claim 2, wherein the hinge ring is rotatably disposed at least partially within the ring support.
- 4. An apparatus as recited in claim 2, wherein the hinge ring 35 follower applies pressure into notches in a surface of the hinge ring to hold the hinge ring in at least some of the two or more preset open positions.
- 5. An apparatus as recited in claim 2, wherein the hinge comprises a ring support follower that applies pressure to the 40 ring support to hold the ring support in at least some of the two or more preset open positions.
- 6. An apparatus as recited in claim 2, wherein the hinge
 - a ring support follower that applies pressure to the ring 45 support to hold the ring support in others of the two or more preset open positions.
- 7. An apparatus as recited in claim 1, wherein one of the two or more preset open positions corresponds to a 180 degree rotation of the kickstand relative to the rear portion of 50 the computing device.
- 8. An apparatus as recited in claim 1, wherein the hinge ring includes a hinge mount portion that is attached directly to the kickstand.
 - 9. A hinge comprising:
 - a hinge frame;
 - a hinge ring rotatably disposed at least partially within the hinge frame, the hinge ring including one or more notches and being attachable to a component to enable rotation of the component relative to the hinge frame; 60
 - a hinge ring follower and a hinge ring spring disposed within the hinge frame, the hinge ring spring applying pressure to the hinge ring follower such that the hinge ring follower presses against the hinge ring and when the 65 hinge ring is rotated to an open position relative to the hinge frame, the hinge ring follower applies pressure

20

into the one or more notches of the hinge ring to cause the hinge ring to assume one or more preset open positions for the hinge.

- 10. A hinge as recited in claim 9, further comprising a ring support rotatably disposed at least partially within the hinge frame, wherein the hinge ring is rotatably disposed at least partially within the ring support such that rotation of the hinge ring to a particular position relative to the ring support causes the hinge ring to engage the ring support, and further rotation of the hinge ring in an opening direction beyond the particular position causes corresponding rotation of the ring support with respect to the hinge frame to cause the ring support to assume one or more other preset open positions for the hinge.
- 11. A hinge as recited in claim 9, wherein the hinge is attached to a computing device, and the component comprises a kickstand that is rotatable via the hinge to support multiple orientations of the computing device relative to an adjacent surface.
- 12. A hinge as recited in claim 9, wherein the hinge is cause the hinge ring follower to apply pressure against 20 attached to a computing device, and the component comprises a kickstand that is rotatable via the hinge to support multiple orientations of the computing device relative to an adjacent surface, wherein at least some of the multiple orientations correspond to the one or more preset open positions of the hinge.
 - 13. A hinge as recited in claim 9, further comprising:
 - a ring support rotatably disposed at least partially within the hinge frame, wherein the hinge ring is rotatably disposed at least partially within the ring support such that rotation of the hinge ring to a particular position relative to the ring support causes the hinge ring to engage the ring support, and further rotation of the hinge ring beyond the particular position causes corresponding rotation of the ring support with respect to the hinge frame to cause the ring support to assume one or more other preset open positions for the hinge; and
 - a ring support follower that applies pressure to the ring support to hold the ring support in the one or more other preset open positions.
 - 14. A hinge as recited in claim 13, further comprising a ring support spring that applies pressure to the ring support follower to enable the ring support follower to apply pressure to the ring support.
 - 15. A computing device comprising:
 - a housing; and
 - at least one hinge attached to the housing and a kickstand such that the kickstand is positionable via the hinge at preset positions to support multiple orientations of the computing device relative to an adjacent surface, the hinge including:
 - a hinge frame;

55

- a hinge ring rotatably disposed at least partially within the hinge frame, the hinge ring including one or more notches and being attached to the kickstand such that the kickstand is rotatable relative to the housing; and
- a hinge ring follower and a hinge ring spring disposed within the hinge frame, the hinge ring spring applying pressure against the hinge ring follower such that the hinge ring follower presses against the hinge ring and when the hinge ring is rotated to an open position relative to the hinge frame, the hinge ring follower engages against the one or more notches of the hinge ring to cause the hinge ring to assume one or more preset open positions for the hinge.
- 16. A computing device as described in claim 15, further comprising a ring support rotatably disposed at least partially within the hinge frame, wherein the hinge ring is rotatably

disposed at least partially within the ring support such that rotation of the hinge ring to a particular position relative to the ring support causes the hinge ring to engage the ring support, and further rotation of the hinge ring beyond the particular positions causes corresponding rotation of the ring support 5 with respect to the hinge frame to cause the ring support to assume one or more other preset open positions for the hinge.

- 17. A computing device as described in claim 15, wherein the one or more preset positions comprise a 180 degree rotation of the kickstand relative to the housing.
- 18. A computing device as described in claim 15, wherein the hinge further includes:
 - a ring support rotatably disposed at least partially within the hinge frame, wherein the hinge ring is rotatably disposed at least partially within the ring support such 15 that rotation of the hinge ring to a particular position relative to the ring support causes the hinge ring to engage the ring support, and further rotation of the hinge ring beyond the particular position causes corresponding rotation of the ring support with respect to the hinge frame to cause the ring support to assume one or more other preset open positions for the hinge; and
 - a ring support follower that applies pressure to the ring support to hold the ring support in the one or more other preset open positions.
- 19. A computing device as described in claim 18, wherein the hinge further includes a ring support spring that applies pressure to the ring support follower to enable the ring support follower to apply pressure to the ring support.
- **20**. A computing device as described in claim **15**, wherein 30 the hinge ring includes a hinge mount portion that is attached directly to a body of the kickstand.

* * * * *